
RD-RI54 709 THE DOCUMENTATION ASSISTANT: AN INTELLIGENT SYSTEM FOR i/I.
DOCUMENTATION..(U) ADVANCED INFORMATION AND DECISION

SYSTEMS MOUNTAIN YIEWd CA J S DEAN ET AL. 22 APR 85

UNCLASSIFIED AI/DS-TR-i047-029-i N88814-83-C-0444 F/G 9/2 N

ail

.1" bo. 2.0 'i :

1.6.

1111 1. E'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-l93-A

O%

%
" --*:-'"-"'*" "*;. . " ' " " " "" " "'-"i-"-;"""""-.....: " " -' "'

ADVANCED INFORMATION '- .

& DECISION SYSTEMS

201 San Antonio Circle, Suite 286
Mountain View, CA 94040
(415) 941-3912 "

TR-1047-020-1

THE DOCUMENTATION ASSISTANT:

An Intelligent System for Documentation

I Jeffrey S. Dean

Brian P. McCune
Susan G. Rosenbaum

April 22, 1985

Final Report for 1 July 1984 - 12 December 1984

Approved for public release; distribution unlimited

Prepared for:
Office of Naval Research S:T"C
Department of the Navy E.-..E
800 North Quincy Street C
Arlington, Virginia 22217 JUN 6

L 'ip The views, opinions, and/or findings contained in this report are those of the
9- author(s) and should not be construed as an official Department of the Nav.-
.position, policy, or decision, unless so designated by other official documentation.'

%%,

... 85 ('068

JKLMSIVI.

r SCURITY CLASSIFICATION OF TFIIS PAGE

REPORT DOCUMENTATION PAGE
Is, REPORT SECURITY CLASSIFICATION lb, 1ft!;III0l t§VL MAliKINGtS

* ~Unclassified _______________________

2s. SECURITY CLASSIFICATION AUTHO0RITY 3. DIStIIIII~rIONAVALABILITY OF 14tL6'jfl

__________________________________ Approved for public release;

Zb. 0(CLAS$IF ICA TIONtOOWAIGRAIDING SCHEDULE distribution unlimited

%4. PERFORMING ORGANIZATION REPORT P4UMUERISS 5. mutJilIDIISPNC. 001f.ANOZATION REPORT IdutAVE-RIS)

TR-1047-020-1

G& NAME OF PERFOR4MING ORGANIZATION a, OFFICE SYMBOL Is NAAr (#I 06(,N1T-'IIIING OfGAtjsZArI0O4

Advanced Information &rfplaei Office of Naval Research
Decision SystemsI

6c. AOORESS (City. State *,ad ZIP* Cadet 7~ AoIi.!*-; lWt,. .1,..a.d ZIP C ...

201 San Antonio Circle, Suite 286 Department of the Navy
* Mountain View, CA 94040-1270 800 N. Quincy Street

_______________________________ Arlington,_Virginia_22217L

* . S..NAME OF FUNDINGSOSRN Sta. OFFICE SYMBOL 9, PROCU#IE hdENT INSTRUMENT IOENTIFICA TICJII NUMSER

* . ORGANIZATIONf

Ik ADDRESS W~ily. Sile wad /I1' Code)10 SO 50U14 I 'ifF UP.L)INCA NOS.

PHUI40jPRJECT TASK11 WORK UN4iT
ELEM\EliJ 1(0 No NO NO.

'e uocumentatlon = ; tuIant: An intelligent
Synteam for Dgmntation ________________________

'Den Jefe . McCune, Brian P.; Rosenbaum. Susan G.

I I. 13s. TYPE Of REPORT 113b. Time COVERED 14 DA)I RE PUJIl -V1. Mo1 .. 114Y# T% PAGE COUNT
Final FROM 84/07/01 yB4/1 2 /011 85/04/22 68

* W1E. SUPPLEMENTARY NOTArTiN

57. COSATI CODES IS. SUBJECT TER06S g~misn.,........... . and Idenify 6blI... au-nbeII

#IIEDO RAP SUB G tended M ewra Vqdel, Documentq tion Standards,- L.~ . OOU UU.G.ocumentat o, Sortare Engineering, Prograusuing Environmen
0902 Intelligent Program Editor, Artificial Intelligence,

09Documentation Structure _______________

19. ABSTRACT ICungenue on res-erse if necessary and We*n (aI0 bv bl...b te,I,,bet

IThe purpose of this document is to describe a semi-automated system for the documentation of
computer software; this system is called the Documentation Assistant (DA). To motivate

'his system, a general discussion of documentation issues and problems is interwoven with

descriptions of how the DA would address many of these topics. A feasibility assessment and ~
.plan for this approach is presented.

The Documentation Assistant project is a research effort at Advanced Information &Decision *~

Systems. The purpose of this effort is to study advanced techniques which address one of the

L ~ most pressing problems during the software life cycle: the process of documentation.

lCurrently, the DA exists on paper only; one goal of the research effort is to develop a

prototype version, which would be incorporated in the Intelligent Program Editor (another

researchprototype being developed at AI&DS under ONR sponsorship).

20 OI!,TniBUTIONfAVAILARILIrY OF ASRI is .1 I iI. .A ,IU lI

.JldCASSIFIEO/UtNLIMITEO - SAME AS APT, oti usk~l Unclassified

22. NAME Of A* SPON!;,oLE INDIVIDUAL 721, I It V- '0 -. ,I. 2 .

Dr. Robert B. Grafton '

(202) 696-4713 Code 430

L [2 00 FORM 1473,83 APR EIIVI)N OF I),%N 73 IS 01II . I,l UNCLASSIFIED 11TIS1..

CONTENTS

TABLE OF CONTENTS

Page

1. OVERVIEW I

1.1 PURPOSE OF THIS DOCUMENT 1
1.2 PROBLEM 1
1.3 APPROACH I
1.4 FEATURES 3
1.5 SCENARIOS 3
1.6 GUIDE TO READING 5

2. THE DOCUMENTATION PROCESS 6

2.1 THE NATURE OF DOCUMENTATION 6
2.1.1 Name 7
2.1.2 Structure 7
2.1.3 Attributes 8
2.1.4 The Documentation Taxonomy 9
2.1.5 Classifying Documentation 10

2.2 THE REPRESENTATION OF DOCUMENTATION 11 -'
2.2.1 The Extended Program Model (EPM) 13

2.3 THE CONTEXT MODEL 14
2.3.1 Understanding What the Programmer is Doing 14
2.3.2 Tracking the Documentation and Code 16

2.4 DOCUMENTATION POLICIES 16

3. CONTROLLING DOCUMENTATION 18

3.1 POLITICAL ASPECTS OF DOCUMENTATION CONTROL 18
3.2 TECHNICAL ASPECTS OF DOCUMENTATION CONTROL 20

3.2.1 The State of the Documentation and Code 20
3.2.2 The State of the Programmer 21
3.2.3 A Rule Base for Controlling Documentation 21

4. THE USER INTERFACE 23

4.1 VIEWS 23
4.2 INTERACTION CONTROL --. 25
4.3 TRAVERSAL :> 26
4.4 RETRIEVAL , 27
4.5 FORMATTING ,;:,. _ 27

5. FEASIBILITY - 28

5.1 IMPLEMENTATION FEASILLJITY 2-28

.~i .i:.'-. .o'-2

F "o-." K2)
h2:t. ~ *- F..~ A ., * * . . .~'* **** **~ " .*.. '. " •

~ j ~ -7. - - .- - - . a - .,- W-7--17 - - a

S . *.

CONTENTS

5.1.1 The Intelligent Program Editor 28
5.1.2 Documentation Database 29
5.1.3 Detection of Outdated Documentation 29
5.1.4 Documentation Retrieval 30 ,..'.
5.1.5 Documentation Formatting and Analysis 30

5.2 DEPLOYMENT FEASIBILITY 30
5.2.1 Current Documentation Problems 30
5.2.2 Documentation Life Cycle Support 31
5.2.3 Supporting Documentation Standards 32
5.2.4 Knowledge Acquisition and Maintenance 39

5.3 FEASIBILITY SUMMARY 40

6. WORK PLAN 41

6.1 TASK SUMMARY 41
6.2 TASK DESCRIPTIONS 42 -

7. FUTURE RESEARCH 44

7.1 FUTURE RESEARCH ON PROGRAMMING ENVIRONMENTS 44
7.2 FUTURE RESEARCH ON DOCUMENTATION 44

8. CONCLUSION 47

9. REFERENCES 48

APPENDIX A: THE INTELLIGENT PROGRAM EDITOR

APPENDIX B: RUBRIC: A SYSTEM FOR RULE-BASED
INFORMATION RETRIEVAL

% '. *5

SW.,

•* -

... o.

.;-. .. "

FIGURES

LIST OF FIGURES

Page S.

4-1: The Structure of a View 24
4-2: The Module Info View 24 -

4-3: The Algorithm Info View 24
5-1: Documentation Life Cycle Support 33
5-2: Overview of SDS Documentation 34
5-3: The SDS Standard (Top Level) 34 -
5-4: Data Item Descriptions (Partial List) 35
5-5: Software Test Plan DID 36
5-6: Attributes of the Software Test Plan DID 37
5-7: Example of Formal Test Requirements 37
5-8: Representation of the SDS Documentation Hierarchy 38
7-1: An Architecture For Advanced Programming Environments 45

Overview Section I

1. OVERVIEW

1.1 PURPOSE OF THIS DOCUMENT

The purpose of this document is to describe a semi-automated system for
the documentation of computer software; this system is called the Documentation
Assistant (DA). To motivate this system, a general discussion of documentation
issues and problems is interwoven with descriptions of how the DA would address
many of these topics. A feasibility assessment and plan for this approach is
presented.

The Documentation Assistant project is a research effort at Advanced Infor-
mation & Decision Systems. The purpose of this effort is to study advanced tech-
niques which address one of the most pressing problems during the software life
cycle: the process of documentation, Currently, the DA exists on paper only; one
goal of the research effort is to develop a prototype version. which would be
incorporated in the Intelligent Program Editor (another research prototype being
developed at AI&DS under ONR sponsorship).

1.2 PROBLEM

The software development and maintenance processes currently consume
extraordinary quantities of resources. A great deal of this cost can be attributed
to the loss of information and knowledge during the software life cycle [Dean-831.
As people work on software, they learn a great deal about it; much of this infor-
mation is forgotten (as they move on to new things) or lost (as they change jobs).

The purpose of documentation is to provide a means for capturing informa-
tion. Unfortunately, current documentation practices fall far short of being able
to stem the loss of information, since documentation is treated as a separate (and
often less important) activity. The result of this is that documentation is inade-
quate: it is often incomplete, out of date, and inaccurate.

Improving the documentation process can make a considerable impact on
* the software development and maintenance process. Clearly, the process of writ-

ing documentation is expensive - it is not amenable to full automation, and
doing it correctly is more work than doing it incorrectly. However, over the long
term (and especially in the maintenance phase), the cost of good documentation
will pay for itself many times over.

1.3 APPROACH

The Documentation Assistant addresses issues relevant at all stages of the
documentation process, from requirements analysis in the beginning to mainte-
nance in the end. However, as a starting point, the research Uescribed in this

-1-_
-u-..-

Overview Section 1

document focuses primarily on that documentation which is written and main-
tained by programmers (i.e., in-line program comments and related documenta-
tion). This focus should not be construed to imply that these ideas are useful
only to programmers. The capabilities provided by the Documentation Assistant
will benefit all those who work with documentation.

The Documentation Assistant presents a unique approach that will alter the
way people deal with documentation. It will provide:

" Integration: The DA will be part of the programming environment; it can
be used just like other programming tools in the environment. There is
no need to switch contexts in order to work with documentation.

* Assistance: The DA will help the programmer perform documentation
tasks by providing both tools and structure. It will not automate docu-
mentation - people are an essential part of the documentation process.

" Intelligence: To ensure that large quantities of documentation are kept up
to date and consistent requires considerable knowledge about the docu-
mentation process; to do this without overburdening or interfering with
the user requires an equal amount of knowledge about users and how
they will use the system.

Not only does the DA provide new ways of working with documentation, it also
provides different ways of representing documentation. Documentation will he:

* On-line: The computer is the home for all documentation. While a hard-
copy form of documentation can be produced, the primary/original form
is always on the computer.

* Structured: Rather than being viewed simply as text, documentation is
recognized to have structure, and this structure is used to help guide the
documentation process.

* Traceable: The dependencies between different documents (or different
parts of a single document) will be represented by the DA.

e Controlled: The creation and modification of documentation will be
governed by the DA, allowing the system to keep track of the document.a-
tion, and ensure that documentation is handled correctly.

The DA represents a paradigm shift in the way documentation is used, by treat-
ing documentation with the same care and formality which has been applied in
the past. only to code. By providing new tools for handling documentation and
new techniques for representing documentation, the DA has the potential to %.
significantly improve the production and maintenance of documentation.

-2- V.

Overview Section 1

1.4 FEATURES

The DA will provide the following features:

" Integr'ated programming environment: Documentation support is provided
as part of the programming environment.

" Structured editor: Documentation is created and modified with an editor
knowledgeable about the structure of documentation.

" Documentation tied to programs: Programs are explicitly linked to related
documentation.

" Navigation aids: Interactive tools are provided for browsing, traversing, -
and searching documentation. ,.-'

* Document formatting: Documents can be formatted using standard text
formatting facilities.

" Detection of outdated documentation: Missing or outdated documentation
is automatically detected.

" Policy support model: documentaTion policies, standards, and guidelines
are explicitly represented in a parameterized model.

* User preference model: The user interface is based on parameterized
information about user preferences.

1.5 SCENARIOS

To provide a better idea of how the DA might appear in use, this section
presents a scenario of such a system in operation. The scenario is based on a
programmer working in a maintenance environment, who is responsible for the
maintenance of both code and documentation of a subsystem. The version of the
DA described is imbedded in the program editor which the programmer normally
uses.

Two caveats are in order. First, this scenario is hypothetical; there is
currently no system that does any of this. Second, the interaction between a user
and the system would, in practice, be primarily graphical; the DA will make use
of graphics for both input and output. Unfortunately, there is no good way to
show this here, and so the interaction between the user and the DA is presented
in narrative form.

-3.

14N,

- - - - - - - - - - - - - - - - -

Overview Section I

Referencing documentation:

The user is examining a program, trying to understand it in order to fix a prob-
lem. He brings the program up on the screen and sees a call to a procedure with
which he is unfamiliar, so he uses the mouse to indicate that he is interested in
that function. A pop-up menu of available documentation for that function ap- .-.
pears. The user again uses the mouse to select the entry on the ment4 that
corresponds to documentation on how the function works. A new window contain-
ing the requested information appears on the screen.

Tracing through documentation:

The documentation makes reference to another procedure which he doesn't know,
and so the user follows a similar procedure, selecting the function (though this
time the function reference appears inside documentation, and not inside code)
and then selecting the documentation entry from the pop-up menu, giving him a
display of documentation describing how this new procedure works.

Restoring context:

When he is finished reading this documentation, the user asks the system to pop
back to where he was; the documentation for the second procedure disappears
from the screen, and the documentation for the first procedure reappears. The
user asks to pop back again, and the documentation again disappears, leaving him
in the code where he originally started.

Creating documentation and code:

The user feels that he has an adequate understanding of the problem now, and so
proceeds to start fixing things. He first adds some new lines of code to the part of
the program that appears incorrect, but quickly realizes that he needq to define a
new procedure to perform a calculation. He moves to an appropriate place in the
code and starts the definition of the new procedure. Since he is writing a new
procedure, the system displays a standard procedure header form on the screen for
him to fill out as he writes the function. While he is working, he alternates
between writing code and writing documentation.

Explanation by example:

There is one part of the documentation form that he doe6 not understand, and "•
he selects that part with the mouse; when a pop-up menu appears, he selects the
entry for sample documentation. The part of the documentation he was unsure of
is now filled in with a sample of what this type of documentation should look like.
This -tample makes it clear to him how this field should look, and he then finishes
that part of the documentation.

-4-

_-, a. _. ., a. _ .,..a £,.~a...•.....-.,,.......-....,-.-....-,...............

Overview Section 1

Reminder to finish documentation:

After finishing the new procedure, the user tries to pop back to the original pro-
gram he was fixing. However, he has left out some important parts of the pro-
cedure header documentation, and so the system asks him if he wishes to write the
documentation now. He does some of the required documentation, but then de-
cides to leave the rest for later, and he tells the system he does not want to update
the rest of the documentation right now.

Reminders to add new and update old documentation:

Now that he has written the new procedure, he is ready to finish the fix to the first
function. He makes the appropriate code changes, and then tries to save the
changes. The system prompts him for new documentation describing the changes 1
he has made fnote how he was prompted for the changes after he was finished, ,.,
rather than after he made the first few changes). The system then prompts him .

with old documentation that might need to be updated. He realizes that some of
this old documentation does indeed need changing, and so he updates this docu-
mentation.

Reminders to finish documentation:

After completing this documentation, the system then asks him to finish the docu-
mentation for the new procedure that he left incomplete. Since he would like to
test the program before completing the documentation on that code, he declines to
finish the documentation now, knowing that he will be reminded in the future that
the documentation needs updating. He saves his work and exits the system.

1.6 GUIDE TO READING

Sections 2 through 4 represent a design plan for the DA; Section 2 describes
the process and structure (and hence representation) of documentation; Section 3
addresses the issues of controlling documentation; and Section 4 presents user
interface techniques. The feasibility of the DA approach is covered in Section 5.
A plan for implementing the DA is presented in Section 6. Possible directions for
future research are briefly discussed in Section 7. Section 8 is the conclusion, and
references for this report are in Section 9. Appendix A is a reprint of a paper on
a related effort, the Intelligent Program Editor. Appendix B is a reprint from,
another related effort, the RUBRIC information retrieval system.

-5-

The Documentation Process Section 2

2. THE DOCUMENTATION PROCESS

The Documentation Assistant is designed to provide intelligent assistance in
all phases of documentation production and maintenance. We use the term %
"software documentation" to refer to all written pieces of information pertinent
to a software system throughout its life cycle, including (but not limited 1o) p
requirements, specifications, design, design rationale, source code, in-line com-
ments, test plans, test data, test results, modification history, problem reports,
user manuals, operations manuals, and maintenance manuals.

A necessary part of any system purporting to provide intelligent behavior is -.
a model of the process/environment in which the system functions. We break lok-
the process of documentation into three components:

" structure of documentation, i.e.. the form of the documentation itself

* context/state model, which tracks significant events in environment

" policy model, which represents constraints on documentation such as stan-
dards, guidelines, and preferences

The following sections discuss these components in more detail.

2.1 THE NATURE OF DOCUMENTATION

The prerequisite for understanding the documentation process is to under-
stand documentation itself. However, there are many views and opinions on
what documentation is. The view taken by the DA treats documentation in
terms of the following three components:

" name: Each piece of documentation has a name that can be used to ref'r-
ence it.

" structure. Pieces of documentation can be interconnected to furni a iruc-
ture.

" attributes: Each piece of documentation may have certain properties or

additional information associated with it

The following sections cover these components in more detail, discussing
representation techniques that will be used in the DA. The views taken here are
partially motivated by research in the areas of semantic networks and object-
oriented programming.

... - - -... ,;-.-..

------- .- - - -- - - T h ' -Iii"

S

The Documentation Process Section 2

2.1.1 Name

Every piece of documentation has a name associated with it. The narn, or .. '.
a document has the same usefulness and functionality as the name of a person: it.
can be used to refer to that document or person. When objects are to be delt
with a s individuals, names are an obvious characteristic (objects which are d':ilt. ". ..

with as aggregates, on the other hand, do not need to be individually nar,d:
they can be named descriptively or procedurally). Names do not have to be
meaningful, though in certain domain such as programming, it is desirable for the
names to have some meaningful interpretation.

As with people, namcs may not necessarily be unique. When this happeris,
additional information is needed to provide disambiguation. For example, "John
Smith who lives on Short Street" can be used to specify a person; "the Require-
ments Specification Document for Accounting Package" can be used to specify a
document. Note that both of these specifications might be ambiguous in a glob! l."
setting (e.g., "Short. Street in which city?", "Accounting Package for which con-
pany?"), but it is necessary to specify only enough information for disambigua- .: . .1
tion with respect to some local context.

Names can refer to classes of documentation as well as instances. For
example, "the user manual for the Emacs editor on TOPS20" is an instance of
documentation; "the user manuals for editors" is a claSs uf documentation
describing a set of documents. From a representational viewpoint, classes and
instances are treated identically.

2.1.2 Structure

Structure is the way in which pieces of documentation are woven together.
It is important for those who read documentation as well as for those who write
it.; it, is also a logical model for the representation of documcntation used inter-
nally by documentation systems. Knowledge of document structure can assist in
many parts of the documentation process, including:

* creation: Structure can guide the creation process by inakirig sure that
documentation is assembled properly.

" searching: Instead of scanning the entire document, structural knowledge
allows searching to be limited to the relevant (sub)section.

" understanding documentation: The connection of high level abstractions
to lower level details provides traceability that makes it easier to under-
stand documentation.

It is natural for different kinds of documentation to be structured in a
variety of ways; possible structures include sequential/linear (one dimensional),
hierarchies/trees (two dimensional), and graphs/networks (n-dimensional). For

-7-

..

Controlling Documentation Section 3

scenario ("if it looks like it has changed, then it has"), this estimate can be car-
ried along to the next step of the process.

3.2.2 The State of the Programmer

The preferences of the user are related to the context model, thus allowing
the l)A to make decisions based on user preference with respect to a given state.
For example, a user might specify that he wants to update procedure level docu- --

mentation whenever he edits and then leaves the procedure; another user might
want to do the updating only at the end of the edit session; and another user
might not want to do updates until the code has been tested and is known to be
working.

Thus, via the preference mechanism, users can control when they will be .
prompted for documentation creation/update. Since the DA will be capable of
interrupting the user to ask for documentation, this type of control is important
to prevent the system from getting in the way of the user. The quantity of
interruptions is also moderated by the mechanisms that allow unimportant
changes to be ignored or put aside.

3.2.3 A Rule Base for Controlling Documentation

The process of asking the user to update documentation is rule-based. The
rules are based on various criteria mentioned earlier, such as importance of docu-
mentation, likelihood of semantic change, preference of user, state of user. etc.
The set. of rules is not fixed; it can be tailored to specific environments. .

The rest of this section is an example of how a rule-base might. be used.
Rather than presenting specific rules, however, we present rule specifications.
which describe a class of rules. These specifications are in the form of functional
mappings: they map the space of the left side (the Cartesian product of the
ifdependent variables) to the right hand side (the dependent variable).

Suppose it is necessary to determine when to notify a user about a particu-
lar documentation object (attached to some segment. of code) being out of date.
To answer this question, start with rule (1), whose right hand side can answer
this question. To evaluate this rule, it. is necessary to evaluate all the dependent
variables on the left hand side. That is, to determine when to notify thc user
about out of date documentation, there are three things to look for: the probabil-
ity that the documentation is really out of date, the importance of the documen-
tation for that particular part of the program, and the user's preferences.

.robabily of

(I) docmentation X j of link of ipporerncee I notify ,,.er .

out of date

-21- S

. . . .- .° . .°. ° .° , , °.
-

.
, ° , . °L. ."-3i' .d-::- ,. , ,. ,':""". " - ' " "'":. , .- : . , _ : ;,,..:-.-.-.. . .. :.,.' i....: .-

Controlling Documentation Section 3

administratively and technically, it is difficult for people to become conversant
with (and able to apply) all appropriate policies. 1By providing tools that help
apply policies, it becomes more likely that policies will be followed. Second, poli-
ies arc sometimes neglected because they are difficult or cumbersome to practice.

For example, policies requiring documentation to be kept up to date with the
hat.t code require programmers to continually keep track of change anti of the
documentation affected by those changes. Documentation tools can help alleviate
this problem by providing support for the more mundane documentation chores
and thus reduce the effort required to do things correctly.

3.2 TECHNICAL ASPECTS OF DOCUMENTATION CONTROL

The process of keeping documentation updated is controlled by several fac-
tors: the state of the documentation and code, the state of the programmer, and
a rule-base for controlling documentation.

3.2.1 The State of the Documentation and Code

The DA will keep track of the state of the documentation. By virtue of the L
Extended Program Model on which the IPE and DA will be built, it is possible to
maintain a better idea of what is happening to code and documentation than has
previously been possible. As a program is changed, the PE will have the capa-
bility to determine if the meaning of the program has changed.' This is possible
because of the multiple program representations provided by the EPM. For
example, if a program were textually reformatted but unchanged, it is easy to
determine that the program semantics are unaffected, since there is no change in
the syntactic structure; if a statement were inserted into the middle of a cliche, it
might be determined that the cliche didn't, change by examining the flow
representation and realizing that the graph of the cliche was disjoint from the
graph of the new statement.

At the coarsest level, the EPM will be able to determine if an object ha .
really changed. Detected program changes can be propagated back to documen-
tation (following the links that connect the documentation to the EPM described
earlier). At the next level, it, is possible to draw associations between certai,
semantic changes and documentation objects. For example, there is an obvious
ronnertion to the syntactic object. parameterlist and the documentation object
parameters. If a procedure changes, but the parameter list does not, ther, 'here is
no need to change the parameters documentation, even though other documenta-
tion linked to that. procedure might need to be changed.

The idea of program change is not, a boolean decision. There may be tinics
when a likelihood of semantic change (and propagation to documentation) can be
assessed on a probabilistic scale. Instead of always assuming the worst-case

I Aclira , i! will mak, a irbilisic' h .,is :Ihoif ,Oht /iges il sclalics. s(ir,, il is impos- "'I"t"
tofI, d,, ,h' tc .arbfilriryv se r rii' ,h;ms',.

-20-

..

Controlling Documentation Section 3

suggestion). There will always be events that, rail on the vital end of the scale;
there is simply no way of avoiding certain things, and when it comes to the issue
or vital policies, preference must give way. On the other hand, to gain accep-
tance, it is crucial to avoid annoying the user and continually overruling his
preferences. Luckily, there are many events that do not fall at the exLreme end
of the scale, and in these cases, there are several techniques for working out . - -'

compromises.

0 schedule negotiation: If policy requires certain documentation, but doesn't
say when it is required, it would be possible to make a compromise with
a programmer whose preference was not to do the documentation. The
compromise is basically this: the documentation does not have to be done
now, but it has to be done at some definite time in the future (e.g., before
the software is released). In this case, longer term policy needs are over-
ridden by shorter term preferences. By warning the programmer that
there is a policy requirement that must be met, there may be time to
allow this information to sink into the programmer's mind; knowing
about this future requirement, the programmer might even rearrange
things (e.g., do some planning) so that the documentation will be easier
to do.

* balancing policy against preference: If there is some flexibility in policy, it
is possible to weigh policy against preference. A user can associate a
degree of importance to preferences; this can be modified as the user
desires. As choices/compromises are made by the system, the user can
adjust preferences to achieve desired results.

* following policy to the letter. There may be some flexibility in policy that
will allow adjudicating in favor of preference over policy. For example, if
policy required a document, but certain parts of that document were not
as important, it would be possible to avoid those sections if the user were
so inclined.

At first glance, these compromises may be viewed as a method for allowing a pro-
grammer to avoid responsibility. However, these techniques serve an important
role in making the DA a system that people will want to use. We believe that
providing a means for balancing policy and preference will help achieve accep-
tance and will not be abused.

Thus, we believe that programmers are generally willing to follow
policy;' however, they often need help in applying policy consistently and intelli-
gently. This philosophy is based on two observations from our studies of
software maintenance environments. First, policies are often neglected because of
ignorance. Given the complexity of programming environments, both

I This is a lce.sary a.s.mption for "ny 1wy-b:aed Iools; if programmers iuust be forced Io
adhrv to policy, tleii there im a nmuh larger problvm that ImXI alone canlot solve.

-19- ,

, .. b, *,* '. '. *";." :

- V.-I.- T.- 1 7 .7.7"T - -

Controlling Documentation Section 3

3. CONTROLLING DOCUMENTATION

The discussion so far has focused primarily on documentation itself and
how the DA handles it. We now turn to how the DA will "handle" the user.
This section focuses primarily on the issues of maintaining documentation in a
"proper" state; the next section looks at the user interface issues.

3.1 POLITICAL ASPECTS OF DOCUMENTATION CONTROL

To keep documentation in a proper state, it is first necessary to define just
what the proper state is. The idea of a proper state is relative to each documen- .
tation taxonomy; what is good practice in one environment may be forbidden in
another. Of the three components that constitute the documentation process, it.
is the policy portion that really determines what is good and what is bad. Policy
says what things should be, what things might be, and what things should not.
be. By definition, if policy is followed, then things will be in a proper state.

Keeping documentation in a proper state is only half the picture; the other
half is helping the user. A documentation system should not be the master that
controls the people who use it. Just the opposite: the users should control the
documentation system. The only way to do documentation correctly is to have
the support and help of the users. A documentation system cannot possibly work
correctly if people refuse to use it or thwart its activities. Thus, there is a deli-
cate balance that must be achieved: on one hand, there are policies that, within
certain limitations, specify how things are to be done; on the other hand, people
have their own ideas about how to do things.

The balance can be achieved by providing a policy-driven mechanism th.a
takes great care in trying to accommodate individual preferences. There is often
more compatibility between policy and preference than might be evident at first
glance. Compatibility may be in the form of non-interference, where policy and
preference do not conflict; it may be in the form of compromise, where there are
mutually satisfiable alternatives; or it may be in the form of goal revision, where
the original plan is modified. The DA will try to traverse this tightrope, simply
because it is the most reasonable path; it is unrealistic to expect to change either
policy or preference to suit the needs of a documentation system.

Achieving this goal is not an easy problem. The DA will not contain built-
in mechanisms that will automatically solve the tension between policy arid
preference. Rather, it will provide a framework; in any particular environment,,
the ability of the system to achieve a proper balance rests in the hands of the
individuals who create the documentation taxonomy.

The key idea behind achieving this goal is to balance the policy require-
nients, which are generally longer term, against the user preferences, which tend
to be shorter term. When dealing with policy, the DA can choose where or) a
spectrum of importance any particular issue falls. The spectrum ranges from
vital (the policy must be followed) to inconsequential (as in the case of a

- 1 8-:''"

...

. . -- ,

- -.. . . o

The Documentation Process Section 2

Since it is rare for programmers to work under the constraints of a single
set of policies, it is expected that there will be a great deal of interconnectivity
between different levels of policy in the policy model. In most organizations, .. -,

there is an apparent hierarchical structuring of policies. For example, there may
be a set of documentation standards for the entire Department of Defense. The
Navy may have documentation standards which augment the DoD standards. A
command in the Navy may in turn have its own standards; a programming
organization under that command may have its standards. Finally, a program-
mer may have his own preferences for things not specified by any of the stan-
dards. In this hierarchy of standards, lower level standards generally refine the
higher level standards, not replace them. However, this need not always be true;
organizations may have permission to override standards at a higher level.

Looking at content alone, there is a great deal of similarity between pro- _
cedures, standards, guidelines, and preferences. They all specify a way of doing
things; it is primarily in importance or necessity that they differ. Thus, the DA
can represent policies in a uniform way, in terms of constraints that apply to the
documentation process. However, the importance of the constraints is
represented separately. For example, suppose there is a constraint specifying
that module level documentation include a revision history. If this is specified by
a standard, then the constraint is vital; if this is specified as a guideline, then the
constraint is recommended; if it is specified as a preference, then the constraint is
weak.

-17-

o,

W-"V Q~ 7-----.- V. 77~-.~4II7 MIE

The Documentation Process Section 2

what the programmer is doing.

2.3.2 Tracking the Documentation and Code
:-. -.

The next step in tracking the programming process is to keep tabs on the
status of the documentation and the code. There are a number of states a
software system may be in, including: preliminary design, design, development, .
debugging, unit testing, system testing, beta testing, and released. Knowing the
state of a system as a whole does not mean that all the components of the system
are in the same state; each component, subsystem, etc., must also be tracked.
Tracking the documentation may be a somewhat easier job than tracking the
programmer; since states do not change all that often, it is not unreasonable for
the programmer to tell the system the state of documentation and code.

However, the system is capable of tracking documentation or code that has
changed. This information is used to provide a more accurate assessment of the
state of documentation and code; it is stored in the documentation database (and
is not lost between sessions). For example, if the system is in the "released"
state, and the code is modified, it should be infer ed that the state of the system
has changed.

2.4 DOCUMENTATION POLICIES

Thus far, we have talked about two dimensions of the documentation pro-
cess: the nature and structure of documentation, and the tracking of program-
mers and documentation. The final dimension necessary for the DA concerns the
choice of what and how documentation is created and updated.

The decisions as to what documentation should be written, how it should
be written, how it should be updated, etc., are not determined just by the pro-
grammer. There are usually administrative procedures that specify what docu-
mentation is required, standards/guidelines spe,.ifying/suggesting how to write
documentation; and only if there are decisions that are unspecified is the pro-
grammer allowed to follow his own preferences. These procedures, standards,
and guidelines are collectively referred to here as documentation policies.

The DA will maintain models of these policies, which it will use to guide the
process of creating and updating documentation. Policies will be represented in a
structured fashion; connections between policies will be explicitly noted. Thus, it
can easily be determined if part of one policy refers to or overrides (or conflicts)
part of another.

The explicit representation of policy is ment to provide for easy accommo-
dation of different policies. While different organizations may have similar (or
overlapping) policies, it is rare for separate grolps to have identical sets of poli-
cies. The policy model factors out this information, ensuring that knowledge "-'.
about. policy is not hardwired into the DA. To make the DA support the policies
of a different organization, it would only be necessary to modify the policy model,
rather than rewrite the I)A itself.

-18-

The Documentation Process Section 2

In order to do th;s intelligently, it is firsi necessary for the I)A to under-
stand what the programmer is doing. The con .xt which we focus on here is the
editing context, where the programmer may be creating, modifying, or reading
programs. Since the [)A will be tied to the Intelligent Program Editor, this
choice of context is logical. From a larger perspective, the context, should cer-
tainly include programming activities outside the scope of the editor; it might
even include activities outside the scope of the computer system (e.g., "what. time
does the programmer leave for the day?" or "when does the programmer go on
vacation?").

There are two basic approaches for determining what the programmer is
doin, id where he is doing it):

* announcement: The programmer "announces" to the system what he is
doing (i.e., the user does the work).

* inference: The system watches the individual actions the programmer
takes, and tries to piece them together into a plan to provide a larger
model of what the programmer is doing (i.e., the system does the work).

The first approach is cumbersome, but nonetheless useful because there are cer-
tain times when the only way to figure out what is happening is by asking the
user. The second approach requires a good deal of intelligence on the part of the
system. To achieve this level of understanding, it is first necessary to build a
library of plans that describe common sequences of actions. Then, techniques for
sorting through a large number of plans in search of the plausible one(s) are
necessary. Finally, it is necessary to determine which plans really fit what the
user is doing. Based on current technology, this approach may be rather expen-
sive.

However, there is another alternative that is essentially a combination of
the two. Suppose that an editor had certain functions that, when used by the

programmer, would give insights as to what was currently happening. That is,
these functions would be designed so that when they are invoked, the editor
would be able to guess fairly easily and reliably what the programmer was doing. ter
For example, in the Emacs editor, there is a command for compiling code without
leaving the editor; use of this command is an indication that the programmer
thinks that the code is complete (at least, complete enough to run). As another
example, imagine an editor that has a special command.for editing procedures;
when the command is invoked with a procedure as an argument, only that pro-
cedure is displayed on the screen, and editing continues on that procedure until
the programmer gives a command to edit another procedure. This command
would allow the editor to infer what function the programmer was editing.

Thus, by providing commands that work on semantic units, instead of tex-
tual units, an editor may be able to infer a great deal about, what the program-
mer is doing. By virtue of the Extended Program Model provided by the IPE,
the IPE is in a good position to provide extended commands that are based on
the syntactic or semantic structure of programs, thus providing better clues as to

-15- ,'-

The Documentation Process Section 2

a single monolithic database), an incremental approach to EPM development can
be taken. Databases and tools for their manipulation can be developed and then
integrated into the EPM. Separate databases for the EPM also mean that each
representation can be stored in the most appropriate type of database. For
example, the database representation for text (i.e., a linear program representa-
tion) will be quite different than the representation for a syntax tree (i.e., a two
dimensional representation).

Thus, the architecture of the EPM provides a natural way of adding addi-
tional representations. In the case of documentation, a new database supporting
documentation structure and operations would be added. The documentation
database will provide three basic components: documentation objects (represent-
ing the documentation itself), attributes (representing properties of documenta- . -

tion), and relationships (representing the connections that tie documentation
objects together).

2.3 THE CONTEXT MODEL

The next step in building an intelligent documentation tool is to build tools
for understanding the process of documentation. In order to manipulate docu-
mentation properly, it is necessary to understand what the user is currently doing
and the current state of the documentation. The focus here is narrowed to the
process of documentation from a programmer's point of view; hence, the
emphasis will be primarily on in-line documentation. However, these ideas are
not restricted to in-line documentation; given that documentation is on-line,
these ideas can be applied to all phases of the documentation process.

The Context Model is a part of the DA that deals with keeping track of all
that is happening in the programmer's environment. This includes keeping track
of what the programmer is doing (e.g., writing code, debugging code, fixing docu-

0 mentation) and keeping track of the status of code and documentation. The
Context Model has two components, a passive component, in which all relevant
information is stored, and an active component, that is responsible for collecting
and maintaining the information in the database. The Context Model is an-
integral part of the DA, and is not directly visible to users; thus, most users
would not even be aware of its existence as a separate component.

2.3.1 Understanding What the Programmer is Doing

One of the key ideas behind the DA is to help the programmer write and
update documentation without being intrusive. If the system gets in the way of
the programmer, he will eventually turn it off or ignore it. On the other hand, in
order to ensure that documentation is kept up to date, it may be necessary for
the DA to intrude on the programmer. The DA will be an active partner in the
documentation process, and, unlike conventional tools, it will be capable of tak-
ing the initiative and asking the programmer to do something.

-14-
d-::::

...

The Documentation Process Section 2

documentation that hide much of this detail. " "-.

The DA will be able to provide this documentation structuring because it
will build on the Intelligent Program Editor (IPE), which provides a rich environ-
ment for program manipulation. In particular, the Extended Program Model
part of the IPE will provide the mechanisms necessary for this cross linking.'

2.2.1 The Extended Program Model (EPM)

The Extended Program Model can be thought of as a database that main-

tains multiple representations of programs. Currently, there are plans for six
representations: text, syntax, flow, segmented parse, cliche, and intentional aggre-
gate [Shapiro-841. The EPM will maintain consistency among these representa-
tions, and the IPE will allow any of these representations to be directly viewed
and manipulated. For example, if an IPE user were examining the syntactic
representation and made a change, the corresponding change would be made to
the text and other representations.

The representations in the EPM are linked together, allowing the IPE to
map between objects in different representations. By adding documentation to
the EPM as an additional representational level, the D. will be able to use the •
EPM to connect documentation to program objects as well as to other documen-
tation.

Thus, by building on top of the EPM, the DA will be able to integrate
documentation with code. Moreover, the DA can make use of the various
representations in the EPM, enabling documentation to be linked to code at any
level, and not just the textual level. For example, the documentation for a pro-
cedure header might be linked to the syntactic unit corresponding to the entire
procedure, instead of (as in current practice) placing the documentation text just
above the procedure in its text form. This means that the binding between the
code and the documentation is increased; if, for example, the procedure were to
bc removed, it would be clear that the documentation should also be eliminat,ed.

The DA should also be able to make use of the version control facility
planned for the EPM. Since the documentation is so closely tied to the EPM, it,
is anticipated that the EPM's version control mechanism will also be able to pro-
vide version control for docume itation. Because of the linkages between docu-
mentation and the EPM, the version control of documentation will be intimately
tied to the version control of the code itself. It will not be possible to lose syn-
chronization between the code and the documentation, as the separation between
code and documentation itself will be blurred.

While the EPM will provide a uniform view of different program representa-
tions, it. is internally composed of a number of databases, linked together to pro-
vide required connectivity. By building upon separate databases (instead of using

I The IitA'ligel; ,. Program I,,iiwi r (and i. I .xle h' I'r ogran Mt x li) is viiig dev,-l'I 'd mh'i r ;

ri-se (* ch ttiti t rag p , iis(rtd I ty ()NH

t .%

-13-

, '.-.. ." ,,,''.'" ._' :.. r ".,"4 ", "- ; ", .",,," ", •. .. "-..., ' " .. .",,- -..--. - . . - -'- .' . -.-.- .- '. .''

* ** .ni e a Dn nmi I ~ l H mH

The Documentation Proces Section 2

objects, and providing mechanisms for connecting and describing those objects, it
becomes feasible to build tools for documentation manipulation.

The decomposition of documentation should be considered an internal
mechanism for the DA; the user does not see his documentation shredded into
thousands of objects and thrown together into some incomprehensible structure.
Documentation structure is retained using the relationships mechanism described
earlier. One can think of a process where documentation is divided up into
objects, each object is labelled, and then connections between the objects are

" drawn.

The next step towards elevating the treatment of documentation is the
storing of all documentation objects in a database, separately from all else. The
database provides two functions: it provides a convenient method for storing L

IN. large quantities of documentation objects, and it provides a means for regulating
the modification of documentation. The means of this regulation is simple: since
documentation is no longer treated as just a text file, there is no way of directly
going into the database to edit the text of a document. The reason for this is to
preserve and control the structure of the documentation. If documentation is
decomposed into component objects, it does not make sense to allow unrestricted
editing of documentation, since this might destroy the structure. Instead, the DA
will allow editing of documentation objects in a controlled context, so that struc- .. 'Z
ture is preserved. Moreover, this level of control allows the status of documenta-
tion to be tracked; when documentation is updated, it is easy to determine which

-* part of the documentation was modified.

In addition to the structure inherent in the documentation itself, the DA
provides a way of directly linking documentation to the program code. This is
very different from the traditional practice of in-line comments. In-line corn-
ments have no formal standing with respect to most programming tools, which
generally discard comments during parsing; even when comments are preserved,
there is no formal way of associating comments with a given piece of code. This
is a task that is very easy for a human user but intractable for a computer. If a
user sees a comment next to or on top of a piece of code, the user can generally
make the assumption that this comment refers to the adjacent code. Unfor-
tunately, this is an assumption that a computer, unlike a human user, has no
way of verifying. Imagine that a comment refers to code which is then changed
(or even worse, deleted). What happens to the comment? By providing a formal
linkage between code and documentation, the impact on documentation of chang-
ing or deleting code can be assessed.

With the same mechanism, documentation that is not normally considered
& in-line, such as specification and design documents, can be linked directly to

code. This provides the ability to look at a piece of code and then trace back to
the design or specification; similarly, one can look at the specification and Ir.e
through to the code which implements part. of that specification.

The result of decomposing documentation into objects and linking them.
directly to the EPM results in a plethora of objects and links, possibly to the
point of unmanageability for the human user. However, this structure is meant
only for the DA; the user interface provides higher level access mechanisms to

-12-

r

~ *.** ** ,~..*.. *'.*-..o" .. * |

The Documentation Process Section 2

desired result. For example, to determine the importance of a particular
item of documentation, the DA might look to see if there is an impor-
tance attribute associated with that item; if not, then the DA might try .
to see if there is some general rule about the importance for all documen-
tation of that type; and if that fails, the DA might try to find similar
documentation objects and see what their importance is. It is possible
that the inferencing mechanism will fail entirely to come up with the
answer;' in this case, the DA could either make a worst case assumption,
or could try another approach.

e automated analysis: Some attributes might be determined by an analytic
routine specifically designed for this purpose. For example, if readability
were a document attribute that was needed for some purpose, and a
document did not have that attribute, then a readability metric might be
applied to the document to determine the appropriate value for the attri-
bute.

* human analysis: The human user can be called upon to do the job if
necessary. This should be a last resort, since the user should not have to
bother with details that the computer could figure out.

2.2 THE REPRESENTATION OF DOCUMENTATION

One of the primary differences between the DA and current documentation "
tools is that the DA treats documentation as a first class citizen. This means
that documentation is not considered unstructured text, simply appearing in

* manuals or in-line, adjacent to program code. Documentation has both proper-
" ties and structure; one should be able to point to a piece of documentation and

say "What kind of documentation is that?" or "To what does this documentatinn
refer?".

The DA will use several techniques to elevate documentation to this level.
The above discussion on documentation structure loosely referred to "pieces" of

* documentation. Pieces of documentation are formally called documentation
objects. A documentation object has a name, attributes, and relationships with
other documentation objects as well as relationships with parts of the progrm ".7

* code.

The purpose of decomposing documentation into a set of objects is to pro-

vide a handle for the computer-assisted manipulation. While it may be easy Iror
'- people to look at documentation and intuit structure and meaning from it, th is ,
" an intractable problem for the computer. By breaking the documentation itito

t2 I This might happen if t.he answer wt.,4 not. deW rrinalle from thO k nowledge Ie; it, might '. o
happen if the itiferenci ig 'n gine wa., not tising the nevesary straltgiv, to find the' a twer.

-11- -..

':" *"

The Documentation Process Section 2

At this point, there is an interesting observation that can be made about
the documentation taxonomy. In a certain sense, names, relationships, and attri-

*-. butes are themselves a form of documentation. One can think of documentation
as describing some system, while names, relationships, and attributes are the next

",'. level up, describing the documentation itself.

2.1.5 Clasifying Documentation

The Documentation Taxonomy provides a mechanism for talking about
documentation, but in order to use this mechanism, it is necessary to classify
documentation with respect to the taxonomy. To classify documentation, it. is

- necessary to decompose the documentation into its component pieces, and then
determine the name of each piece and its relationship to other pieces. There are
basically three mechanisms the DA will employ for doing this:

definition-time analysis: When documentation is created using the DA, it
will be immediately classified; the decomposition, name, and structure is
implicit in the interface for most documentation (i.e., the documentation
is entered in a form that is easily decomposed). This makes classification
primarily a definition-time operation (as compared to a run-time opera-

-.tion), since the bulk of the work is done when the taxonomy is initially
defined.

e run-time analysis: If documentation is not created via the DA, it is much
" -more difficult to classify. It may be possible to provide automated tools

to segment and classify documentation items. Unfortunately, unless a
* "fairly strict set of documentation guidelines have been followed, this

method is both weak and prone to errors. ..*

o human analysis: The alternative to automatic post-analysis is human
analysis. This is the most arduous technique of all, but it is more reliable
than run-time analysis.

Determining attributes calls for slightly different mechanisms because attri-
butes are used differently. Since the DA needs the decomposition, names, and
relationships of documentation to construct documentation networks, this infor-
mation is necessary just. to get, the documentation into the DA system. Attri-
butes, however, are not essential until the associated documentation is actually
manipulated. When it is necessary to determine attributes, there are several

.techniques (analogouis. but not identical, to the above techniques):r

e automated inference: Attributes can often be logically inferred using ot her
information in the)A. Inferencing means that by ascertaining a set of
logical premises, one can make certain deductions. InI the simplest case.

L inferencing is simply looking up the fact in the knowledge base. More
often, inferencing involves a chain of implications which lead to Ihe

-10-

L
:: :': 4.

.8 ,"~~ t %'

The Documentation Process Section 2

programming languages, the semantics of attributes such as type will not be built
into the interpretatiosi mechanism; instead, there will be support for the declara-
tive specification of these properties.

The choice of attributes, and the values which attributes may take on, is
;-. partially dependent on the environment. While there are some attributes, such

as type, which are always needed, there are other attributes that may not be
needed. Moreover, even required attributes vary in the values which they can
have; the possible values for the type attribute will vary across environments.

2.1.4 The Documentation Taxonomy

The notions of name, relationship, and attribute provide a means for talk-
ing about documentation in general. A Documentation Taxonomy is a set of
names, relationships, and attributes that can be used to talk about the particu-
lars of documentation.

The Documentation Taxonomy provides a basis for reasoning about docu-
mentation. The structure provided by the relationships and attributes allows the 1k
recording of many kinds of information about documentation. However, this
information about documentation need not be complete. By applying inheritance
rules to documentation structure, it may be possible to infer facts about docu-
mentation objects without having that information explicitly represented. For
example, to determine how to format a documentation object, the first thing to
check is to see if there is an attribute for that object which talks about format-
ting specifications. If not, then the parent of the object might be checked to see F !
if it has any formatting specifications. If the parent doesn't have the attribute,
then the search continues up the hierarchy, until an ancestor with the appropri-
ate attribute is located.'

One of the more challenging aspects of building a system to manipulate
documentation is that there are so many ways of using documentation. Note
that in the previous discussion of documentation, there were no absolute state-
ments about documentation requirements; for any particular application and
environment, the particular names, relationships, and attributes will vary. While
there may be commonality between different environments, the design of the DA
recognizes this as an option rather than a given.

The goal of the documentation taxonomy is to provide a descriptive (rathcr
than prescriptive) framework, allowing the DA to be tailored to particular
environments. In many cases, taxonomies may be the same for different environ-
ments; certainly, parts of taxonomies will always be common to all environments.
The process of building up a taxonomy for a new environment might be compar-
able to the process of moving an expert system to a different, task in the same
domain.

.I ,.ri. athvr n re dilfi' i. . l ii iquIs for eh~.trmini g d.e vahi e or nissing altri utes; tis, thn , imiist

Iv" rigi's Io delermitill el h liii lt'. call Iw i I hi. heril(d and which ItIil, be l li .enhi ,d ill so.ic.

ol hir waY (si th ws ask i ig I h,' Ii.5Cr).

"-9-

. . .. LiI

The Documentation Process Section 2

example, hierarchical structures are common for textual kinds of documental ion,
such as manuals. Unfortunately, most existing systems that provide docuuent
structuring capabilities (such as word processors, mail programs, and documenta-
tion browsers) force documentation to fit into one particular type of structure.
Because it is based on a more general mechanism for creating different types of
structures, the DA will have considerably more flexibility.

In the DA, the idea of a relationship is used to capture structural informa-
tion. A relationship is a connection among n (usually two) pieces of documenta-
tion. Connections themselves have names, which indicate the type of relation-
ship. By providing connections with names, a diverse set of structures can be
supported. Examples of connection names are: contains ("a procedure header

- contains the name of the procedure"), references ("the Program Description
Document references the Program Design Specification"), depends on ("the Com-
puter Program Test Report depends on the Computer Program TestSpecification"), etc.

For example, if a particular procedure header contains information on the

author of that procedure, then the relationship contains will hold between thef procedure header documentation and the author documentation. Relationships
can be among documentation classes as well as documentation instances, thus
providing a way of specifying that all objects of some class have a certain rela-
tionship with all objects of another class (i.e., inheritance). As another example,
if all procedure headers contain information pertaining to the date the procedure
was written, then the relationship contains will hold between the class
procedure_header and the class date_written.

2.1.3 Attributes

Attributes of documentation are descriptions or properties that pertain to
n the documentation. An attribute refers to a particular piece of documentation.

There are many attributes that one might use to describe documentation, such as
purpose, readability, completeness, correctness, quality, or currency. Attributes
can be created and accessed by users as well as by documentation tools.

Attributes are easily represented as property-value pairs. For each piece of
documentation, there can be an arbitrary number of property-value pairs. If the
DA were posed a question of the form "What is the status of this piece of docu-
mentation?", it would attempt to answer this by checking the value of the status
property. For example, if a program comment were added to clarify a bug fix,
there may be an attribute purpose which has the value "clarifies the bug fix"; if a
program comment were written by a particular programmer, there may be an

r attribute author which has as its value the name of the programmer.

There are certain attributes that are required for all documentation objects.
For example, the type attribute is appropriate for all objects, regardless of
environment. As in programming languages, the type attribute is a name which
has certain semantic associations that characterize the referenced object. Type is

U an important vehicle for talking about documentation. It conveys information
and expectations to anyone who knows the definition of the type. But unlike

• :-.:-8-

II

Controlling Documentation Section 3

Rule (2) says that the likelihood that documentation is out of date can be
determined by the type of the documentation object, the type of the program
object, and the type of the change that was made to the program object. The
first two clauses can be determined by lookup; the other clause must be deter-
mined by the EPM.

J type of J typtype 1 type ofp probability of

(2) documentation X program X change documentation

object[object out of date

There are two more clauses from rule (1) that need to be evaluated. The
importance of a link can be determined by evaluating rule (3), which says that,
the importance of a link can be determined by looking at the type of documenta-
tion object and the type of program object. For example, if the program object
is a procedure and the documentation object is a procedure header, then the
importance is "high".

-""type of type of {importance

(3) documentation X program - oflink

object object

Finally, the user's preference can be determined by evaluating rule (4),
which requires evaluation of the type of documentation and program ohject

.* (already evaluated by the above two rules) and the state of the context model,
which can be looked up.

j type of 1 Jtype of) state of)uc
(4) documentation X program X context -- r ec

object object model preference

This process of starting from a goal and recursively searching through a
rule-base in an attempt to find a way to reach the goal is known as goal-directed
inferencing or backward chaining. As values are determined for each clause, the
values are passed hack up, until the goal is reached. Since the proposed evalta-
tion scheme for the system is based on a multi-valued logic, answers can be some-
where between "yes" and "no". Thus, reaching an answer may require the selec-
tion and application of cutoff levels.

-
": -22-

L

...............

The User Interface Section 4

4. THE USER INTERFACE

Understanding and manipulating documentation is one half of the DA; the
user interface is the other half. The phrase "Documentation Assistant" is used to
connote a partnership between the computer and the user. The human is an
essential part of the documentation process; the purpose of the DA is to help, not p9_
replace, the user. To provide this help to the user, the DA must provide an inter-
face that is intelligent and user friendly.

The most important aspect of the interface provided by the DA is the
- integration of the documentation into the programming environment; in particu-

lar, the DA will be built on the Intelligent Program Editor, and will allow natural p
access to documentation through the editor. There should be no need for the
user to switch context in order to manipulate documentation.

The IPE will provide a window-oriented user interface. It will present a
display consisting of a series of windows, allowing for the user to know the state
of the system at all times through the visual representation on the screen. The
documentation and code under scrutiny can be displayed in a multiple number of
views. The user can move easily among the different views by moving between
(or creating new) windows.

Multiple modes of interaction will be provided by the IPE. User input can
occur through both menu item selection and keyboard input. Each of these
modes will be available simultaneously; the user can use whichever is more con-
venient. The system will be highly customizable, allowing the interface to be
modified to suit the preferences of individual users.

In addition to the PE functions, made available by building th DA on top
of the IPE, the user interface will provide a number of documentation-specific
functions. The rest of this section will describe some of those functions.

4.1 VIEWS

Previous discussion on documentation representation described a way of
splitting documentation into small chunks or objects. This provides a natural
way for a computer system to manipulate documentation. However, it piovides a
most inconvenient model for people, who may prefer to deal with documentation
in larger units. The view mechanism of the DA provides a user level mechanism
for handling documentation.

A view is like a template: it provides a frame for displaying a set of docu-
mentation objects together (Figure 4. 1).

Views are named entities. For example, to see general information about a
module, a user might ask to see the Module info view for that module (Figure
4.2). There may be many views for one particular object; a user might ask to see
the Algorithm Info view for the same module (Figure 4.3).

-23-

LL.

.L ._ .:.. ., , ,. -., _-. ., ,:.. . .-.. ...: -. ..-. -.-. : ,. ,u ,, - . .': ' .: -. .'. • -.- .-

i TOT.

The User Interface Section 4

view- name

link-name link-value "-.

link-name line-value

Figure 4-1: The Structure of a View

Module Info
Name sort
Author Joe Ada
Date August 1984
Revision 2.1

Figure 4-2: The Module Info View

Algorithm Info
Name sort
Keywords sort, bubble sort
Description bubble sort algorithm using ...
Parameters integer arra to be sorted
Reference Knuth, vol. 3, page xxx

Figure 4-3: The Algorithm Info View

There is no one set of views that will be adequate for all environments,
since the specification of views is based on the taxonomy itself. Different libraries
of views will need to be provided for each environment; but, since views are pri-
marily meant to be a user interface tool, the DA will also permit the creation of
new views by individual users in order to suit their own needs.

-24-

.~..,-

t .. ".. o.

The User Interface Section 4

In the above examples, views were used to examine existing documentation.
Views can also be used for creating or modifying documentation. To document a
module, a user might ask the DA to create a Module Info view for that module.
The system would display the template (with known values, such as date or
author, automatically filled in); creation of the documentation then becomes the
process of filling in the template. Such a technique provides a way of structuring
the documentation creation process. If the user wants to set up general module
information, the view makes it clear what should be included in that information.
It also provides a way of analyzing documentation: when filling in a template, the
decomposition of the documentation into objects is obvious (since each slot in a
view is a separate object).

To go a step further, if the user needs some assistance in writing documen-
tation, it would be possible to display an example of how that documentation
might look. This sample could be a fake version, created specially for this pur-
pose, or it could be actual documentation for another part of the system. For
documentation that is standardized, this information should be readily available,
since standards generally give examples or descriptions of how documentation
should look.

4.2 INTERACTION CONTROL

It has been customary for the programmer to have control over the pro-
gramming environment; actions are initiated on request only. This mode of
interaction is known as user initiative. User initiative places the responsibility
for all actions on the user. In complex environments, there may be too many fac-
tors (such as programming standards, guidelines, administrative procedures,
module interconnectivity, etc.) for the programmer to deal with in any reasonable
fashion. The alternate approach is called system initiative, wherein actions are
initiated by the system without user intervention. System initiative is particu-
larly useful in complex environments because computers are good about keeping
track of large numbers of (sometimes seemingly unimportant) details. On the
other hand, system initiative is inadequate for total control because the system
doesn't always know what the programmer should be doing. The idea of a mixed
initiative approach is a good compromise, where some actions are user initiated
and some are system initiated.

The DA will provide a mixed initiative form of interaction. The user initia-
tive part is fairly obvious: the user can ask to create, modify, search, and view
documentation. The system initiative aspect is somewhat unique, and provides
the DA with a capability not generally found in programming environments.
Based on the model for determining when documentation needs to be
created /updated, and based on the context model of what the programmer is
doing and what state the system is in, the DA can take the initiative to ask the
programmer to update documentation at an "appropriate" time.

Having the DA prompt the user for documentation is a significant step. It
means that remembering to find and update (or create) appropriate documenta-

2 tion is no longer strictly the programmer's responsibility. It means that the pro-
grammer does not have to switch contexts in order to update documentation. It

-5-

L , . ."......

,..-.-:

The User Interface Section 4

means that the programmer does not even have to be concerned with using the
correct tools for performing the update. The act of updating documentation is
considered an integral part of the editing environment; moreover, keeping track
of the state of all the documentation becomes the responsibility of the system
and not the programmer.

p.. 4.3 TRAVERSAL

The term traversal refers to moving through the documentation. There are
two basic modes of traversal: browsing and navigating. Browsing, or undirected
traversal, is the process of going through the documentation without looking for
anything in particular. For example, if you were given a program you had never
seen before and told to find the bug in the program, the first thing you might do
would be to browse through the documentation just to see what it looks like.
Browsing is characterized by wandering or undirected search; if you were to look
over a browser's shoulder, it would be difficult to figure out what he was looking
for. Browsing is unstructured: the user neither needs nor wants restraints.

On the other hand, navigating, or directed traversal, is a more goal-oriented
search. For example, if you were given a program you were familiar with and
told to find a bug in the program, you might have a very good idea of where to
start looking. V. .'.

Navigating is a more structured process, and providing support to help
structure and track the search space is natural. For example, there are two basic
strategies for navigating hierarchies: breadth-first and depth-first.i To provide
support for a user operating in either of these modes, a system can keep track of
where the user has been and which place should be visited next. Thus, when a
level is popped, the user will find himself where he left off, without keeping men-
tal or written notes. Since it is often the case that a person will use a cross
between these two strategies, it is important to provide a mechanism that is flexi-
ble enough to provide both alternatives.

There is also another technique that is useful during navigation and possi-
bly during browsing. This is the idea of guided trails. If you were maintaining a
program, and knew quite well how that program worked, you might want to
somehow encapsulate that information so that others could learn without repeat-
ing all your efforts. Imagine that you were to explain a certain aspect of the pro-
gram to someone. You would start out in a certain place, point out relevant ." '".
things, move to another place, point out other things, etc. The path followed as
you move through the code is a guided trail; you have figured out what parts of
the system are necessary to examine in order to understand the operation of some
aspect. If there is a way of saving this trail, then it could be "played back" later

(to others, or even to yourself, since you might have forgotten the trail).

I In a study on program comprehension, we found that these straWgies were an imIportant 2..

charm(leri.stic or the process or deimggiftg programs (I)omeshek-841.

-26-

%
%n.#!.h

U * * L * -. - ---.. U* ,', ., . - . f * - *- -

The User Interface Section 4

4.4 RETRIEVAL

Documentation retrieval is similar in many ways to navigation: searching
through the documentation space for particular information. The difference is
that in navigation, each move may be charted on the basis of the previous move;
in retrieval, it is known how to get directly to the information.

The standard technique for retrieving documentation (or, for that matter,
most any kind of on-line information) is via information/database retrieval
languages. The IPE will provide a retrieval language called the Program Refer-
ence Language (PRL); while this language is aimed at retrieving programs, it
could also be used to retrieve other kinds of objects. The PRL may be well
suited to documentation retrieval because it is designed for retrieval of structured
objects.

Another technique for retrieving documentation from the IPE is fairly obvi-
ous: pointing. If an object is on the screen, retrieval can be done by pointing to L
the object (with a cursor or a mouse) and asking for all the documentation associ-
ated with that object. Retrieval is done simply by traversing the links from the
program database to the documentation database.

4.5 FORMATTING

While the DA is prnarily concerned with on-line documentation, it needs
to be capable of converting documentation into a hardcopy form. Conversion of
documents that have a "book-like" form (e.g., manuals, specifications, plans) into
documents is fairly straightforward; it is only necessary to provide output that is
compatible with a text formatter. On the other hand, conversion of in-line com-
ments into hardcopy form requires much more work. Since there may not be any-.-\":*
explicit linear structuring in this documentation, the DA will provide a means for
selecting and composing these objects.

-27-

..............................

f. . .* . -. ... **.***.*.*. .. ** *.** *.~* *.... -.

I

Feasibility Section 5

5. FEASIBILITY

To assess the feasibility of the DA, we examine here two major issues: feasi-
bility of building the system ("implementation") and feasibility of placing the - -

system in use ("deployment").

5.1 IMPLEMENTATION FEASIBILITY

The DA will be rather eclectic: some sections of the DA represent new code
that must be written specially for this application; some sections represent experi-
mental code borrowed from other research efforts; and other sections may be
commercially available software. These various pieces of software are discussed
below.

5.1.1 The Intelligent Program Editor

Many of the ideas for the DA have come out of the IPE effort at AI&DS; in
fact, the DA will actually be built upon/into the IPE system. With this
bootstrapping, much of the start-up effort that would have been renuired for the
DA will not be necessary. The IPE will provide part of the database (the EPM)
as well as a user interface.

However, it should be noted that the IPE is a research effort. The IPE is
still in the design phase, and it will be some time before any of the IPE system
could be used to support the DA. Moreover, while one of the goals of the IPE
effort is to produce a runnable prototype, there are no assurances that the IPE
effort will actually produce a system that provides a usable base; as a research
effort, the goals of the project are to demonstrate concept feasibility, not to
deliver usable software.

The DA could be implemented without the Extended Program Model of the
IPE. However, the DA would then forfeit the ability to link code directly to
documentation (and hence the ability to automatically detect outdated d)cumen-
tation). The DA would still have a structured documentation database (though
somewhat less sophisticated), tools for manipulating that database, a policy
model for controlling documentation, and a user preference model for conforming
to user desires.

The DA could also be implemented without the IPE user interface. How-
ever, unless additional effort were put into the development of a DA user inter-
face, much of the interactive, integrated, window-oriented nature planned for the
DA would be lost. The DA would still have much of its original functionality; it
would just not be as easy to use.

Thus, the best approach to building the DA would be to utilize as much of
the IPE as is available. Building on the IPE can only help the I)A; its unavaila-
bility would impact only the time necessary to build the DA.

-28-

r

. . . -..

'.

I ~I *II~I ~ 2-. . -.. .

Feasibility Section 5

5.1.2 Documentation Database

The documentation database for the DA will be developed in two steps.
The first step is to develop a stand-alone mode: a database for documentation
that provides support for just documentation and is not linked to the Extended
Program Model. The second step is to integrate this database into the EPM, so
that documentation and programs can be linked together. *-

Developing a stand-alone documentation database is definitely feasible.
The best approach would be to develop a special purpose database in order to
address intricacies specific to documentation. As a backup approach, an existing
database system could be used, and necessary database routines could be added.

Integrating the documentation database into the EPM is more of an
unknown. Since the EPM is still under design, determining the ease of adding a
new component is difficult. However, the EPM is being designed with the inten-
tion of being able to add documentation. Thus, it is likely that adding the docu-
mentation database to the EPM will be significantly less work than the develop-
ment of the EPM itself.

5.1.3 Detection of Outdated Documentation

One of the most unique features of the DA is its ability to automatically
determine when documentation is out of date. There is a great deal of variability
possible in the effectiveness of this task. To better describe this process, it is use-
ful to borrow a few terms from the field of information retrieval. In the context
of the DA, the term recall refers to the percentage of outdated documents that
were detected; the term precision refers to the percentage of detected documents
that were actually outdated documents.

The goal of the DA (and of any retrieval system) is to achieve maximum
recall and maximum precision. Unfortunately, it is often the case that strategies
for trying to increase one measure results in decreasing the other. Therefore, any
strategy aimed at increasing one measure needs to be carefully monitored to
determine the effect on the other.

The simplest strategy for detecting outdated documentation is to flag docu-
mentation as outdated if anything it references is changed. This is likely to
result in high recall 'jut very low precision; along with the documentation that
actually needs changing, the system will flood the user with documentation that
is not outdated. Based on current technology, this is about the best that can be
done. The DA should be able to surpass this, achieving a similar degree of recall
but with a significantly higher degree of precision.

The most prudent approach to increasing precision appears to be the incre-
mental addition of knowledge about the documentation taxonomy (provided by
the DA itself) and knowledge about the program semantics (provided through the
EPM). The utilization of this knowledge makes it possible to eliminate more

-29-

.............................-

%-%7.
m

'.7 --7 •

Feasibility Section 5

pieces of documentation from the list of possibly outdated documentation. The
purpose of incremental addition of knowledge is to add knowledge in small
chunks, making it easier to determine the kinds of knowledge have a negative
side effect (in terms of precision and recall).

By using these techniques, it. is quite likely that the DA can achieve its goal
of higher recall and precision. Just what levels can be achieved is an open ques-
tion, as is the question of what levels users will find acceptable.

5.1.4 Documentation Retrieval

The documentation retrieval facilities discussed earlier should be relatively
easy to build. In the case that users find themselves in need of a more general
purpose retrieval capability (e.g., unformatted text retrieval), it may be possible
to make use of an existing information retrieval system. Commercially available
information retrieval systems provide basic capabilities for locating documenta-
tion. Better yet, AI&DS has already developed a prototype of an intelligent
information retrieval system that provides retrieval capabilities beyond that of
any commercially available system [McCune-83]. Incorporating one of these
retrieval systems should be a straightforward effort.

5.1.5 Documentation Formatting and Analysis

The DA effort will not require the development of any new documentation
formatting tools; rather, it will rely on existing document/text formatters. The
only difficult part of document formatting is linearizing the database/network of
documentation, coercing it into a form acceptable by the text formatter. Given
that the documentation database (and the tools for manipulating it) are avail-
able, there should be little difficulty in achieving this. Similarly, existing tools for
checking spelling, grammar, diction, readability, etc. could easily be added to the
system.

5.2 DEPLOYMENT FEASIBILITY

Assuming that the DA can be successfully built, the next question is the
feasibility of moving such a system out of the research environment and into a
production environment. The following subsections provide some insight into
these issues.

5.2.1 Current Documentation Problems

The need for a tool like the DA is great, especially in government/military
programming environments. Current documentation practices in these environ-
ments suffer from many problems. A number of these problems were identified in
an earlier study of software maintenance [Dean-83], which found that documenta-
tion takes a back seat to software, for a variety of reasons:

-30-

...

7- V

Feasibility Section 5

1. Documentation is not considered an important part of the end product:

" only a portion of the total documentation is specified as a
deliverable

" the requirements for deliverable documentation are much less
rigid than the corresponding requirements for the software

" documentation is often not done until after the programming

2. Documentation is not considered an important part of the software life
cycle:

" documentation is alloy ed to lag behind the software

* programmers dislike writing documentation

" documentation writers have inadequate training

" writers are presented with little structure and inadequate guide-

lines

3. Documentation is poorly handled:

" tools for manipulating documentation are inadequate

* documentation is sometimes done off-line

" it is difficult to evaluate the completeness or correctness of docu-
mentation

The DA provides a basis for helping reduce these problems. The first problem
would be partially alleviated if contractors used the DA during the program
development process, since their documentation task would be eased, and their
coding environment would be integrated with their documentation environment.
The second problem is also partially addressed by the DA; while no tool can
make someone write documentation, a good tool can encourage and assist the
process. The DA certainly forces the recognition that documentation is a critical
part of the software life cycle. The last problem is directly addressed by the
capabilities of the DA.

5.2.2 Documentation Life Cycle Support

The DA, as described in this document, represents only one viewpoint of a
documentation system (that of the programmer). For any documentation system
to be truly usable, it must provide facilities for all those involved in the produc-
tion and maintenance of documentation, including designers, managers, technical
writers, typists, and testers. Each of these user categories has its own unique
needs. For example, a designer might want support for the development of

-31-

- -- -""-- -

Feasibility Section 5

documentation in the form of a program design language; a project manager
might want tools to do consistency checking on documentation, to make sure .
that the documentation corresponds to the code.

The DA is being designed to accommodate the needs of all these users. The
basic underlying mechanisms (i.e., database, user interface) will be in place; all
that will be required is the development of additional tools, built on the existing
system, to support these different needs. Thus, the proposed version of the DA
represents one facet of a documentation support system (see Figure 5.1). It will
eventually be capable of supporting the entire documentation life cycle, but this
will require further development.

5.2.3 Supporting Documentation Standards L_

The DA is designed to support different documentation standards. To give
a better picture of how this might be done, this section presents a portion of the
proposed SDS military standard [SDS-83]. In the example presented here, just
one path of the SDS documentation tree is traversed, and an example of how the
DA might represent this information is shown. This example is meant to provide
a rough sketch; it should not be construed as a complete picture of SDS nor as a
complete picture of documentation representation techniques.

Figure 5.2 serves as a map to this discussion; it shows the path through the
SDS documentation that will be traversed in this example. As presented here,
the documentation looks hierarchically arranged, but this is a simplification made
for the purpose of presentation. At each level, the item in boldface is the item
that will be focused on at the next level.

At the top level of the hierarchy (Figure 5.3) are two items, DOD-STD-
SDS, the proposed military standard on defense system software development,
and a set of Data Item Descriptions (DIDs). The SDS standard references all of
the DIDs.

The Data Item Descriptions describe the documents that contractors must
deliver with software. There are approximately 25 DIDs referenced by SDS.
Each DID may reference a number of other DIDs. Figure 5.4 shows the overlap
between DIDs. The figure also distinguishes between several different categories
of DIDs: requirements/design documents, testing documents, and user documents.

Each DID describes the structure of a document. Figure 5.5 presents the
structure in the Software Test Plan (STP). From Figure 5.4, it can be seen that
the STP references several other documents. These references are shown in more
detail in Figure 5.5, where the arrows represent specific places in the STP that
reference other documents.

In addition to the document structure, each documentation object has attri-
butes associated with it, as discussed earlier. In Figure 5.6, there is an example
of some of the attributes that might be associated with the Software Test Plan V
DID.

-32-

Feasibility Section 5

,PROGRAMMING1

DESIGN B TESTING

NTION OCMNAIVMANAGEMENT

CHANGE INTEGRATION
CONTROL

QUAL ITY
ASSURANCE

Figure 5-1: Documentation Life Cycle Support

-33-

Feasibility Section 5

Standard on Defense System Software Development (Figure 5.3)

Data Item Descriptions (Figure 5.4)

Software Test Plan (Figure 5.5)

Formal Test Requirements (Figure 5.6)

Figure 5-2: Overview of SDS Documentation

DOD-STD-SDS

Data Item Descriptions

Figure 5-3: The SDS Standard (top level)

There may be additional substructure to the structure presented in Figure
5.5. Figure 5.7 presents an example of how to fill in the section entitled "Formal
Test Requirements." Unlike the higher level structures, this structure presents
suggestions to the author of the document, rather than stating necessities.

The DA weaves these levels together into a network that represents the
relationships and interconnections. Figure-5.8 is an example of how this network
might be represented by the DA. Objects on the left hand side of the figure
represent classes of objects; objects on the right hand side represent instances or
subclasses of these classes. For example, DOD-STD-SDS is an instance of a stan-
dard; the Software Test Plan is a subclass of Data Item Descriptions. L

SDS is but one example of what documentation structure might look like;
certainly, many other structurings are possible. As indicated by this example,
the structuring mechanisms provided by the DA are meant to be quite general in
order to provide support for any type of documentation structure.

-34-

L °

.

COMPUTER SYSTEMS
ORAORS MANUAL

* SOFTWARE USER'S MANUAL

SOFTWARE REQU IREMENTS SPEC IF ICAT ION-

/ 0 INTERFACE 0
,,,,,.,.,,,,,,,, ~REQUIREMENTS

FTWAR TESTSPECIFICATION
SOFTWARE

REPORT PLN 0

___________ /INTERFACE -

____ _ /DESIGN DOCUMENT

SOFT WARE TEST
SOFTWARE

PROCEDURE TS

DESCRI PT ION

00SOFTWARE ~ ,'~

01TOP LEVEL /
DESIGN SOFTWARE
DOUMN 00 - DETAILED -1

/ - DESIGN
DOCUMENT 00

tj iire 5-4: 1):i1t ,xI I v m I (sc r1 iti s (p r IM Ia I st.

-35-

APPENDIX A

A Knowledge Base for Supporting an Intelligent Program Editor

References Section 9

9. REFERENCES

[Dean-831 Dean, J. and B. P. McCune, "An Informal Study of Software Mainte-
nance Problems," Software Maintenance Workshop, Montery, Call-
fornia, December 1983.

[Domeshek-84]Domeshek, E., D. Shapiro, J. Dean, and B. McCune, "An Informal
Study of Program Comprehension," AI&DS TM-1014-3, March
1984.

[McCune-831 McCune, B., R. Tong, J. Dean, and D. Shapiro, "RUBRIC: A Sys--
tern for Rule-Based Information Retrieval," Proceedings, COMP-
SAC '83, IEEE Computer Society, pp. 166-172.

[SDS-83] Proposed Military Standard on Defense System Software Development,
DOD-STD-SDS, December 1983.

[Shapiro-841 Shapiro, D., J. Dean, and B. McCune, "A Knowledge Base for Sup-
porting an Intelligent Program Editor," Proceedings, 7th Interna-
tional Conference on Software Engineering, March 1984, pp. 381-
386.

-48-

7-,-"

.-.

Conclusion Section 8

8. CONCLUSION L..

Despite the tremendous need for support of the documentation process,
there has been little research in this area aimcd at making significant improve-
ments to the current techniques used. As an intelligent tool designed to assist
users in all phases of the documentation life cycle, the Documentation Assistant
represents a significant step in this direction.

The focus in this report has been on documentation from the programming
viewpoint; this is a logical place to start, given that programmers already use
various computer-based tools on a regular basis. In addition, current research on
programming environments is leading towards tools like the Intelligent Program
Editor (under development at AI&DS), which provide a natural base for building
documentation tools.

However, to reach the goal of providing total documentation life cycle sup-
port, it is clearly necessary to address the needs of the many other users of docu-
mentation. This report should be viewed as a first step in that direction. The
DA provides a framework for manipulating documentation that should easily
extend to provide this support. To provide support for the entire life cycle, addi-
tional tools and techniques must be developed.

To construct the DA, it will be necessary to make use of existing technol-
ogy, experimental technology, and brand new technology. The building of a sys-
tem like the DA definitely has risks associated with it, especially the parts of the
system that require new technology to be developed. However, given the mix of
technologies that will be used by the system, it is likely that a significant portion
of a DA prototype can be built with minimal risk.

With the rapidly escalating growth (and cost) of software maintenance,
there is a clear need for the development of new tools and techniques to handle
the problems and bottlenecks associated with the software process. Of these
issues, documentation is possibly the biggest and most crucial one. The Docu-
mentation Assistant is aimed precisely in this direction.

-47-

A... ...

S...... ...

. . ---------- ~.wI I. l -. - -. ,, ! - .- i =.

Future Research Section 7

documentation that is not in the database. Tools and techniques for aid-
ing the conversion of this documentation may eventually need to be
developed.

*Programming Context Model: The purpose of the Programming Context
Model is to keep track of what the programmer is doing. However,
current techniques for doing this are overly simplistic, and if accuracy is -

required, a good deal of user cooperation is needed. The development of
more sophisticated techniques for determining what the user is doing
would ease the task of the user, as well as increase the reliability of this
component of the system.

* Improved Detection of Outdated Documentation: By making use of the
semantic information that the EPM will provide, it is possible to increase
the accuracy of determining outdated documentation. There is a great
deal of information to be gained from the various semantic representa-
tions; just how much accuracy can be achieved is an open question.

e Consistency Maintenance: The issue of consistency maintenance is a crit-
ical one for both the IPE and the DA. Consistency checking can be done
at many levels. For example, when a documentation object changes, it is
necessary to track down any other dependent documentation objects.
However, determining these dependencies can be difficult. Even if the
dependent documentation explicitly references the changed documenta-
tion, it is unclear if the change actually affects the dependent object; even
worse, the dependent object might reference the changed documentation
implicitly. As the DA grows more sophisticated, it is necessary for the
consistency maintenance mechanisms to follow.

e Knowledge Acquisition: A great deal of information/knowledge is neces-
sary for the optimal functioning of the DA. To port the DA to different
environments (or to modify what is known about current environments)
old knowledge must be modified and new knowledge must be added.
Tools for aiding this knowledge acquisition process are essential, espe-
cially if the task is to be performed by someone other than the system
developers. For example, in the case of rule-based systems, knowledge
acquisition tools include structured rule editors (to insure that only syn-
tactically correct rules are entered), rule evaluators (for determining the
effect of rule sets), rule analyzers (for determining properties such as sen-
sitivity, connectivity, consistency), etc. Similar tools will be needed for
the DA.

-46-

..
... %

-TV

Future Research Section 7

PROGRAMMER

V.-.

INTELLIGENT

PROGRAMMING

ENVIRONMENT

DOCUMENTATION

PROGRAM DEBUGGER *
ASSISTANT I

EDITOR I

-45-EXENEDPRGAMDAABS

Fgr7-:AArhtcueFrAv nce rgamn Enironmen-s

-4.5-f:

%7. -51.

Future Research Section 7

7. FUTURE RESEARCH

The plan for building a prototype of the DA necessarily omits many of the
issues and areas requiring significant research efforts. Some of the research issues
that might be addressed in the future are discussed below.

7.1 FUTURE RESEARCH ON PROGRAMMING ENVIRONMENTS

The IPE and the DA are two important components of an advanced pro-
gramming environment currently being developed at AI&DS. The architectural
basis for this environment is the intelligent program/documentation database
capability provided by the Extended Program Model, which will provide func-
tionality usable by a variety of tools. While the combined IPE/DA system would
provide a great boost in capability over existing programming environments,
there is still at least one important aspect of programming environments that our
research does not currently address.

To increase the usefulness of the IPE/DA, the next step would be to incor-
porate support for the dynamic aspects of programming (i.e., tools to support
program execution). These tools would also be based on the EPM (Figure 7.1),
and thus would benefit by having access to the multiple representations provided
by the EPM, including the linkages connecting various program segments and
documentation. With access to this additional information, these tools could pro-
vide capabilities beyond those provided by current runtime support environ-mentd . .:ii

7.2 FUTURE RESEARCH ON DOCUMENTATION

With respect to documentation, there are a number of directions that would
be logical for further advanced study. A brief discussion of these issues follows.

*Documentation Life Cycle Support: Support for all people involved with
the production and maintenance of documentation must be provided.
This includes support tools for different documentation types (e.g.,
requirements, specification), document entry (e.g., checking spelling,
grammar, style), document monitoring and control, and consistency
checking. The database provided by the DA will be an ideal base for the
development of these tools, since it provides documentation already in a
highly structured form suitable for machine analysis.

9 Retrofitting to Existing Systems: The discussion so far has assumed that
all documentation is already in the documentation database. For new
systems that are built using the IPE/DA, this might be a reasonable
assumption, since documentation will be entered into the database as
soon as it is entered into the computer. However, for programs that have
been developed without the aid of these tools, there will be -:

-44- .'

.. ,.'. .. - . - • ... F

... ,....-......

Work Plan Section 6

moderate, primarily because the IPE must be modified to accommodate docu-
mentation. However, the highest risk is assuming the availability of a workable
version of the IPE. Even if a prototype of the IPE is available, it is unclear how
easy it will be to modify the system.- .

Year 5 (1989):

The fifth year of the project will result in a more fully integrated version of
the IPE/DA, allowing a user to easily move between programs and documenta-
tion. Advanced capabilities will begin to be developed, including the ability to
model user preferences about various states of the system, as well as the ability
to automatically detect outdated documentation.

As in the previous year, if the IPE system is not sufficiently developed,
integration of the DA into the IPE will be hindered. The task of providing
advanced capabilities for user modelling and outdated documentation detection
should be considered research topics, and thus may be fairly high risk.

The integrated version of the DA will be demonstrated at the end of this
year. An evaluation of the system will also be performed, by applying the DA to
some subset of the code and documentation for a real software system (to be
selected at some future time).

-43,
'..U :

-43-..

.. ~ * * * ~ *1U Ug*~**. .*b -... *.*
- U.- .' * -~ %.,'- % * %' U~.% % .% %' ~ ** ***. * * *

Work Plan Section 6

6.2 TASK DESCRIPTIONS

The following paragraphs describe the tasks in greater detail and describe
the risk associated with each set of tasks.

Year 1 (1985):

The major focus of the first year of effort will be the design of the DA sys-
tem. A large part of the effort will be to examine currently existing databases -"
and database tools to discover current technology that could be used in the sys-
tem itself or as an aid during system development. During this year, the internal
representation for the documentation will be developed. The design of the user
interface will be undertaken and will make use of the Rapid Interface Prototyper
system that is currently under development at AI&DS. This system allows for
the user interface designer to study different styles of user interface display and
actions before actually committing the ideas to code. "'

Years 2 & 3 (1986/1987):

The second and third years of effort will be concerned with the construction
of the actual database, making use of existing tools and technology whenever pos-
sible. The database manipulation functions will be developed during this time.
To enable incorporating existing documentation into the DA, methods will be
developed to allow the user to interact with the system to add preexisting text to
the database. Finally, a primitive "word processing" mode will be added to the
user interface to ease the process of entering larger amounts of text into the sys-
tern.

Depending on the availability of existing software, the risk involved in the
construction of the documentation database may vary; it would range from low
risk (in the case that an existing database system could be used) to moderate risk
(in the case that the database must be designed from scratch).

This initial version of the DA will be used for internal experimentation. At
the end of this period, a demonstration of this system will be provided.
Year 4 (1988):

Much of the fourth year of effort will be spent in the integration of the DA
into the IPE. As a major step in this task, the ability to associate documentation
with code will be added. This will allow the user to point at a piece of code,
request to see the documentation associated with that code, and have the text
automatically displayed. In a similar fashion, it will be easy to add code-level
documentation to the database at the same time the code is being written. This
year will also include work on providing documentation formatting functions that
will allow hardcopy documents to be produced from the documentation database.

For tasks not involving the IPE, the risk for this year is low; it mainly
involves providing different ways of manipulating documentation. Since a large
portion of the effort for this year will build on the IPE, the risk is compounded.
Assuming that the IPE prototype is available, the risk for the remaining tasks is

-42-

Work Plan Section 6

6. WORK PLAN L

This section presents a plan for the design and implementation of an
exploratory development prototype of the DA. This prototype will be able to
make use of the technology and tools being developed as part of the Intelligent
Program Editor Project, another Navy research project currently in progress at
AI&DS.

6.1 TASK SUMMARY

The tasks involved in building a research prototype of the DA are summar-
ized below on a yearly basis.

Year 1 (1985) [estimated effort: 0.8 person/years]

e Develop an overall system design
* Design the documentation represeptation formalism
* Design and prototype user interface

Years 2 & 3 (1986/1987) [estimated effort: 1.0 person/years per year]

* Construct database
* Design and implement database functions
* Implement a "word processing" mode for documentation
* Demonstrate initial prototype (end of 1987)

Year 4 (1988) [estimated effort: 1.5 person/years]

* Design needed functionality to integrate into IPE
• Associate documentation with code
e Provide documentation formatting capability

Year 5 (1989) [estimated effort: 2-5 person/years]

* Complete integration into IPE, with ability to document different views
* Basic method for automatically detecting outdated documentation
o Basic user modeling capability
o Demonstrate and evaluate integrated prototype (end of 1989) r

-41-

. . **.. **'P** € . o

.. -._ ,. -, -,. -. .

mr- ~~ ~ V-V: -_

Feasibility Section 5

It will also be important for knowledge-based tools to provide functionality
even in applications where only a minimal amount of knowledge has been col-
lected. Of course, there is a real tradeoff here: as knowledge is reduced, the abil-
ity to act intelligently is also reduced. It makes little sense to employ intelligent
tools without any of the knowledge needed to act intelligently (one might say
that this is a non-intelligent application of technology). While the DA is depen-
dent on a documentation knowledge base, it does provide a number of useful
capabilities requiring only a small amount of knowledge engineering. These
features include the documentation database, documentation interconnection
(though all interconnections must be explicitly specified by the user), and track-
ing (though the user must manually enter the appropriate information).

These tradeoffs can be described as striking a balance between the work
required by the user and the work required by the system. As the knowledge
base grows (along with the ability of the system to handle that knowledge base),
the amount of work required by the user decreases. Cutting back on the
knowledge base does not eliminate the possibility of using an intelligent system;
it just shifts the burden for much of the legwork from the computer to the user.

The issue of who performs knowledge engineering (and its subsequent
maintenance) is one that the research community has still not adequately
answered. To date, the people who have done knowledge engineering have been
Al researchers (or people trained by them). The issue is particularly important in
production environments, where continual environmental changes necessitate
corresponding changes to appropriate knowledge bases. For intelligent systems to
achieve wider usage, it is necessary to develop tools and techniques for allowing
people who are not AI experts to perform knowledge engineering and mainte-
nance tasks.

5.3 FEASIBILITY SUMMARY

The more "intelligent" aspects of the DA will be based primarily on
research already in progress at AI&DS (as part of the ONR-funded Intelligent
Program Editor project). Existing software tools that provide other capabilities
(e.g., text formatting, information retrieval) could be incorporated into the DA
system.

Many current documentation problems faced in real programming environ-
ments are addressed, either directly or indirectly, by the DA. The primary cost
associated with using the DA (apart from development costs) is the initial collec-
tion and codification of the documentation knowledge base. This is a one-time
cost for each programming project/environment; however, much of this informa-
tion should be reusable, especially between similar environments.

- 40-

-40-

Feasibility Section 5

*. 5.2.4 Knowledge Acquisition and Maintenance

The difference between the current generation of programming systems and
future generations (e.g., the so-called Fifth Generation systems) is knowledge.
Current generation systems have very little knowledge about how they are being
used and about the semantics of their intended application. For example, pro-
grammers today usually use text editors to edit programs. There is a great deal
of syntactic and semantic information that a program editor could use; ignoring
this information reduces the capabilities of the system and fails to reflect the con- -
ceptual levels at which programmers work. Yet this increased capability is pre-
cisely what is required to increase the usefulness and productivity of computer
systems.

There is, however, a price to be paid for making systems more intelligent,

and that is the cost of knowledge. Knowledge is a rather expensive commodity. ..

It is costly to hire an expert to help apply knowledge; it is costly to codify
knowledge; it will be costly to take that knowledge and incorporate it into
software that exhibits intelligence.

-'. The artificial intelligence community is quite aware of the value (and cost)
of knowledge. They have coined the term knowledge engineering to describe the
process of acquiring and codifying knowledge. Most Al systems are restricted to
narrow domains in order to reduce the amount of knowledge necessary, thusU reducing acquisition costs as well as reducing the size of the search space.

Despite the cost of knowledge, intelligent systems can indeed be worth the
expense. The gains in productivity and effectiveness provided by intelligence
should more than compensate for the increased costs. However, it should be
recognized from the beginning that it will cost more to develop intelligent sys-

w tems; the payoffs come later as systems are put to actual use, and the intelligent
systems prove more economical than their "dumb" counterparts.

There are two basic approaches to reducing the costs and risks associated
with intelligent systems development. First, as knowledge based systems become
more common, it may be possible to reuse existing knowledge, at a much lower
cost than redoing the entire knowledge engineering process. It will also be possi-

- ble to share knowledge among different instances of a particular system. Second,
*: as a means for evolving gradually towards more intelligent systems, intelligent

tools can be usable even with minimal knowledge bases. By reducing the initial
knowledge engineering effort, costs can be controlled until the concepts have been
proven.

The knowledge in the DA takes many forms; for example, there is
knowledge about the structure of documentation, knowledge about the documen-
tation process, knowledge about what the user is doing, knowledge about policies
and user preferences, and knowledge about interacting with the user. Some of
this knowledge is environment or site specific, and some of it will be valid for
many sites. The cost of reusing knowledge will be less than the cost of regenerat-
ing it (just as the cost of reusing software is less than the cost of rewriting it).

-39-

L
"- A._Z

Feasibility Section 5

STANDARD

Iliii
supercedes: MIL-STD-167S

DATA ITEM DESCRIPTION
HAS-A

IS-A
SOFTWARE TEST PLAN DID

t number: DI-T-X116

abbreviation: STP

supercedes: DI-T-2142

phase: testing

HAS-A

TABLE OF CONTENTS

*IS-A 'SOFTWdARE TEST PLAN TOC

sections: 1

SECTION

IS-A FORMAL TEST RQIEET

L Figure 5-8: Representation of the SDS Documentation Hierarchy

-38-

Feasibility Section 5

Software Test Plan
attribute value

Number DI-T-X 116
Abbreviation STP
Predecessor DI-T-2142

Agency Navy
Phase testing

Scope single CSCI
Length 13 pages
Date 5 December 1983

*Figure 5-6: Attributes of the Software Test Plan DID

All formal tests shall include the following test requirements:

* The size and execution shall be measured.

- .* Nominal, maximum, and erroneous input and output values.

* Error detection and proper error recovery, including appropriate error
messages.

Formal Tests for radar tracking requirements shall include the following test
requirements:

o Simulated test data on all possible combinations of environmental con-
ditions.

e Input data taken from the environment ("live data").

I [Figure 5-7: Example of Formal Test Requirements

•., ..'. -37-

L
I-.

• ". 4."

Feasibility Section 5

Limitations/Traceability
Limitations

__ oftware Rtequirements SperifiationTraceability Itrar1rurmnsS~fet~
Informal Test Plans

Unit Testing
Unit Test Requirements
Unit Test Management
Unit Test Schedule

CSC Integration Testing
CSC Integration Test Requirements
CSC Integration Test Management
CSC Integration Test Classes
CSC Integration Tests

CSC Integration Test Table -. Software Requirements Specification
CSC Integration Test Schedule

Resources Required
Facilities
Hardware
In terfaci ng/Su pport Software
Source

Formal Test Plans
Formal Test Requirements
Formal Test Management
Formal Test Classes
Formal Tests

Data RQetion and Analysis
Formal Test Table . Software Requirements Specification

is Formal Test Schedule
Formal Test Reports -~Software Test Report
Resources Required

Facilities -.

Hardware
Interfacing/Sup port Software
Source

Notes
Appendix

Figure 5-5:- Software Test Plan DID

-36-

I~ii i ~t~'r i~ ,) i ;inI ~ . I t i I. I ~ I k 8."',~~~ ~~~ ;I~tl .tn, ldt 1~ ,ti~. .1 1 r 1 19 /1

I of 6

A KNOWLEDGE RASE FOR SUPPORTING AN INTELLIGENT PROGRAM EDITOR

Daniel G. Shapiro

Jeffrey S. Dean

Brian P. McCune

Advanced Information & Decision Systems

201 San Antonio Circle
Mountain View, CA 94040

ABSTRACT context of a program search.

This paper presents work in progress towards a 2. H)TIV£TOI
program development and maintenance aid called the
Intelligent Program .ditor (IZl), which applies
artificial intelligence techniques to the task of An intelligent editing system is a sophisti-

manipulating and analyzing programs. The IPE is a cated tool for developing and maintaining programs.

knowledge based tool: it gains its power by expli- The goal, insofar as it is possible, is to decrease
citly representing textual, syntactic, and many of the amount of information a programmer needs to

the semantic (meaning related) and pragmatic supply in order to create and maintain a program.
(application oriented) structures in programs. To and to simultaneously increase the reliability of

demonstrate this approach, we implement a subset of the resulting code. This can be accomplished by
this knowledge base, and a search mechanism called incorporating knowledge about the structure and

the Program Reference Language (PIL), which is able intention of programs into the editing tools used

to locate portion@ o programs based on a descrip- to develop and maintain them. Perhaps the best way

tion provided by a user. to illustrate this approach is to present an
allegory having to do with the production of a
technical manuscript.

This research was supported by the Air Force Office
of Scientific eearch under contract F420--C- a manuscript which needs
06 SitOfice a Research under contract to be typed for publication. If it is given to a~", .-.. 0067, the Office of Naval Research under contra ct tysthooenoseaEgisherut ud

'00014-82-C-0119, and Rose Air Development Center typist who does not speak English. the result would
under contract F30602-80-C-0176. be, at best, a word-for-word copy of the original
u o manuscript. If it is given to an English-speaking

typist, simple errors, such as misspellings and
1. INTODCIUON punctuation problems, might be fixed during the

typing process. If the manuscript is given to an
English teacher moonlighting as a typist, the

The effort and expense involved in software result might well be a version in which the prose
maintenance have been recognized as a major limits- is smoothed and otherwise improved. Finally, if
tion on the capabilities of current software sys- one is lucky enough to find a typist familiar with
tems. In a study on software maintenance issues in the domain of discourse (such as the author), the
the Air Force. we found that the process of resulting document might even have factual errors
comprehending the form and function of existing corrected and incomplete thoughts identified.
software (i.e., what it does and how it does it) is
the largest task in the maintenance process (21. A programmer selecting an editor system for

writing code is in a similar situation. A standard
The basic cause of this "comprehension prob- text editor is comparable to the non-English-

lea" is the loss of knowledge during the program- speaking typist; text appears exactly as it is

r ming process, caused by factors such as poorly typed, with no enhancements. The English-speaking
written software, inadequate documentation, pro- typist could be compared to a syntax-oriented edi-
grammar forgetfulness, and personnel turnover. To tor, which can eliminate syntactic program errors
address these issues, we have started a project to and misspelled keywords. The English
develop intelligent, knowledge-based programing teacher/typist knows about the language itself but
aids, designed to help the programmer overcome Iim- not about the content of the thoughts. This situs-
itations of more traditional tools. This paper tion is comparable to a programming language-
describes the initial phase of one of these tools, specific editor which applies knowledge about the
an editor known as the Intelligent PLgja Editor donain of programming; this editor can instantiate
(lPE). The following sections discuss the motive- general programming techniques, catch certain types
tjon behind intelligent editing, the design of an of semantic errors, asks style suggestions, and
intelligent editor, a database for the editor, and improve the overall flow of the program. The
a scenario demonstrating an actual implementation technical typist who understands the content of
of a portion of the lIPE' database, used in the what is being said is analogous to an editor -hat

%
... "'' . .

2 of 6

utilizes knowledge about the applhcation domain; it 4. 115 EMPlDXD PROGRAM MODEL

can help in algorithm development and can catch
certain types of pragmatic errors which are depen- T t o dl)edent upon the specific application domain. The Extended Program Model CEPM) provides a ..~
dnew way of representing and accessing programs by

3. ii zIrICJLLIGIa fGIUI EDzTOR defining a vocabulary for discussing programs which
uses terms that are much closer to the ones which
users naturally employ. The EPH provides this

The Intelligent Program Editor (IPE) described capability through the use of a database that
in this paper most closely corresponds to the represents the structure of programs ram a variety.
English teacher/typist mentioned above, in that it of vews. . The EPK can form the backbone for a

will support textual and syntactic manipulations, number of systems which exhibit a deep understand-

and have the ability to assist in the implementa- ing of the organizational structure and meaning of f.
tion of typical programing actions. This power is code.
obtained through the use of a database that expli- T i o c t f o
citly represents the functional organization of The EPM is constructed in terms of two major

programs in terms of textual, syntactic, and subsystems (see Figure 1) : a program structures
intention-oriented structures. With this database, database and a search and update component called
the IPE is in a position to become more of a pro- the Program Reference Language, which provides
gramming environment than solely an editing tool. access to the database. In addition, the EPM will
In this vein, we are interested in addressing the contain a library of "rational form" constraints ,_
folloving design goals 15). that will monitor program composition for its

structure and intentional content. As a whole, the
The lPE should provide a means for naturally system can be thought of as a database management

incorporating documentation into the program system for creating and maintaining code. It pro-
development process. In our view, this requires vides a search language for accessing its
the ability to link documentation into the organi- knowledge, a facility for performing updates, as
zational structure of a oroeram (similar to well as a set of semantic integrity and consistency
helson's (31 concept of hypertext), and the ability constraints for monitoring the validity of the data
to actively use any information that is supplied it contains.
(to provide programmers with a motivation for
including descriptive data). In the IPE, documen- EPhI
tation will provide input to a program search *'.

facility.

The system should support incremental program-
analysis. The object here is to employ the SEARCH I
system's understanding of program structure to (PR MANIPULATION-
catch syntactic and certain semantic errors prior L".'"
to execution. Examples include identifying vari-
ables that are accessed before being set (via data
flow analysis) and detecting programming cliches
that have been incompletely implemented. There is
also a role for error prevention: some editors PROGRAM STRUCTURES

* (e.g., [61) prevent syntactic errors from ever DATA BASE
occurring.

The IPE will allow the user to employ alter-

nate program visualizations. This means allowing
the programmer to examine or modify code through
any of the representations mentioned above. For 9 CONSISTENCY CONSTRAINTS

example, a syntax based approach might be appropri-
ate during program construction, while a graphical

" data flow display may be useful within the debug-
ging process.

All of these capabilities require the use of Figure I. The Extended Program Model
multiple program representations, as well as
mechanisms for searching and manipulating the 4.1 TUE PROGRAM ST&UCTURES r&TA BASE
information they contain. Therefore, in the first
phase of the IPE project, we constructed a proto- The EPM's program structures database is con-type version of this program database, called the structed in terms of a collection of represents-
E. xtended Praa Model (EPM), and demonstrated it tions which reflect the transition from a syntactic

in the context of program search. The remainder of to a more intention-oriented analysis of code (Fig-
this paper discusses the EPH and the search example ure 2). We are considering these viewpoints to be
that was produced. abstract data types which facilitate different

sorts of retrieval operations.

L

.".

•.. ;,,-.. .. '._...;.,.,.,.,-.., ,.......,. -.- , ;-....

3 of 6

"- uKRIATlN defined a library of such TMe Mi1 (h. uses the
tern cliche; in this paper. we use both terms

IsI(TIONAL AWGATES interchangeably).

The remaining databases (intentional aggre-

o P PAIERNS gates and documentation) provide methods for asso-
ciating the intentions behind a program with
specific features of code. They capture pragmatic
knowledge relating to the domain of application of

* .- ARSE the program. Intentional aggregates are a type of
"' -formal documentation that allow the association of

larger program fragments with key concepts (sup-
CplOI.M ATAFtWd plied by the user). They can be used to collect a

set of T??s and other program segments that imple-
ment a single conceptual function; for example, a

S"T" collection of TPPs representing queue operations
might be grouped (by the user) into an intentional
aggregate representing a scheduler.

The documentation database allows the user to
figure 2. Representation Levels in the £PH associate comments with any of the program features

already described. At the lowest (i.e., textual)
level, this would take the form of in-line con-

The textual representation gives the EPH the meats. At other representational levals, the user
view that most text editors provide. It is a low- could, for example, document the data flow in a
level approach, concerned with words and delim- particular module (saying why an input-output rela-

- iters. but it allows for important textual search tionship occurs), justify his use of particular
operations. TPPs, or explain why particular syntactic features

are employed. The advantage of this technique over
The syntactic viewpoint embodies the rules of current documentation practice is the ability to

grammar for particular programming languages. The make a direct association (via links maintained by
syntactic database provides the EKP with a vocabu- the IPZ) between the documentation and what it
lary for programming constructs such as "for" talks about, at an appropriate conceptual level.
loops, parameters, and procedures.

The next level of representation is the flow 4.2 KNOWLEDI ACQUISITION
level, which provides standard data and control
flow information. It provides a vocabulary relat-
ing to the logical structure of programs. Since the EPM's database is intended to sup-

port an actual editing system in the near future,
The segmented parse representation defines a it is important to address the question of where

vocabulary for a program in terms of its component its information is obtained. In our approach, the
data and control flow. For example, iterations are different knowledge sources are acquired in part
decomposed into a set of roles which identify the from the user, and in part by automatic means.
subfunctions of a loop. In the breakdown we are Specifically, the syntactic representation can be
using, loops contain generators, filters, termina- obtained directly from the textual representation,
tors, and augmentations [7). Generators are sag- and the segmented parse viewpoint can be con-
seats which produce a sequence of values. They can atructed through data flow analysis techniques of,
be further refined into initializations and a body, the kind developed by Waters 171.
which is the portion that is executed many times.
Filters restrict that sequence of values. A termi- The TPP structures are harder to obtain.
nator is like a filter, except that it has the Recent research efforts indicate that general
additional potential to stop execution of the loop. recognition of cliches may be possible Ill, but at
An augmentation consumes values and produces the current time, these techniques have not actu-
results. There are other vocabulary elements for ally been demonstrated. The EPH will use manual
describing straight line code. recognition techniques (at least until automatic

recognition techniques have been refined). There
The taxonomy discussed up to this point pri- are two manual recognition techniques planned for

marily captures information about the form of pro- the system. In the first, the user points to a
[grams (as opposed to their meaning). The only piece of code and identifies it as being a psrticu-

semantic elements we have introduced describe the La TP (as a way of documenting the system); at
substructure of built-in entities such as loops, this point, once the scope has been narrowed down,
The next (more abstract) viewpoint considers pro- it may be possible to identify the subcomponents of
grams to be built of objects with stereotyped put- these programing cliches automatically. In the
poses. These are called typical programing pat- second method, the user uses TPPs for program gen-
terns (TFPs). Examples of TMPs include variable erstion (as in [81); by instantiating s TPP and
interchanges, list insertions, and hash table "filling in the blanks," the EPH can acquire all
abstractions. These sbstractions are the tools the necessary information.
employed by every expert programmer. Rich has

L 2%

* .*-... '.C''''*

4 of 6

The intentiomal aggregate and documentation representations do not necessarily have a one-to-
views must be wholly obtained from the user. At a one correspondence. The information in each data-
minimum, the EZP's planned consistency mechanisms base is either automatically derived, or can be
viii identify any of this information that may be reasonably obtained from the user. In situations
out of date due to modifications to the code. where the latter is necessary, we have assumed that

information may be provided in an incomplete form.

5. 1E p"CCJA 3l3IUCX ICUIGE 5.1-=Z ?5.1 oDDE PAUMTING-",

In order to demonstrate the feasibility of the From a computational point of view, the man
EPK, we implemented a portion of the database problem involved with this multiple representation
described above, and built a version of the EP's approach is to define a mechanism that is able to
search facility, the Program Reference Language compare information obtained from the different
(PL) which operates on that data. The PML is a sources of knowledge. The PRL accomplishes this
tool for locating regions of program text based via the code region abstraction, which functions as
upon a description provided by the user. As a sup- a common language that each of the representations
port systm. it provides programmers with an can use to communicate.
intention-oriented vocabulary for specifying por-

" tions of programs in situations where they may be Code regions support two different approaches
unfamiliar with the detailed structure of the code. to search. In the first method, which we call
This might occur in the process of editing programs sequential filtering, the user makes a gross stab 8
which may be too large to remember explicitly, or at selecting a code region by generating all of the

" in the act of understanding code which has rarely elements which satisfy some fairly general condi-
been seen before (as is often the case in mainte- tion. lie then sequentially restricts that set by
nance). applying more and more conditions. For example. to

find "the loop which computes the sum of the test
The PRL demonstration system allows program scores', he locates the set of all loops, and then

* search based on four of the representations restricts it to the ones which involve test scores

described above, namely the textual, syntactic, and summations.
segmented parse and typical programming pattern'
views (Figure 3). These databases are connected In the second approach, the user identifies a

through a ode reion abstraction that associates collection of items, possibly from several dif- '
program features with physical sections of program ferent databases, and intersects them together to
text. find the elements which satisfy all of the condi-

tions he wants to impose. In this "code painting"
approach, the PRL combines these items ess.otially
by overlaying the corresponding regions o! code.
For example, locating "the loops which c. npute

n -sums" is done (figuratively) by coloring all loops
red and all placea that compute sums yellow. Any
region which comes up orange has all of the proper-

ties that were desired. .

Code painting is a deliberately coarse affair.
CM 410 It is designed to exploit the kind of incomplete or

even slightly inaccurate information which the EPM
% will contain, given that much of the data is pro-

vided by the user. In some cases, code paintiag
may not identify the exact section of the program

"FIA which the user desired, but in the context of an
155-1 ,useuIN interactive system with a screen oriented display,

£mI aL nt "close" will be good enough. To help the user see
the effects of code painting, it is possible to
highlight the identified section(s).

Figure 3. The Program Reference
Language Implementation AS"A" " T '5.2 A SCEK.2J UI IG THE P&L-"-"

The PRL has a flat information struLture. It
- represents each database in terms of a complex tree The following example shows how the PRL uses

12 or graph structure of frames. Although the system the code painting paradigm to answer the question

can arbitrarily convert between viewpoints by using "find the initializations of the loop which com-

code regions as an intermediary, the databases have putes the sum of the test scores, given the Ada .-.

no direct links between one another. These conver- program shown in Figure 4. %

sions are inherently heuristic since the separate %

L%

-. ,...-.,

.':.. ,.. ..,
:.:. ,..,.,.

5 of 6

fat MAXIZE in 1.. 10 loop
TOTAL:= ARRAYSIM (TEST-SCORES. &XSIZE);

put (TOTAL);
end loop;

function ARRAYSUH (A: in ARRAY; H: in INTEGER) return INTEGER is
begin

SUN: REAL:- 0;
for I in I..N loop ,

SUm:- SUM * A(l); ,
end loop;
return SUM;

end ARRAYSUN;

Figure 4. The Ada Program Used in the Scenario.

In this example. the user starts by identify- views this region from the segmented parse perspec-
Lag three sets of data, corresponding to the summa- tive (where initializations are represented expli-
tion TPPs, syntactic loops, and segmented parse citly), and scans it for segments of the appropri-
frames involving the test score array. ate type. This is a filtering operation, in which

the user applies restrictions to a previously iden-

tified set of objects.
> (index "sum-ation tpp-database)

-T IPPsetI
> (Filter (Segs-Vithin CODE-REIO3),

> (index 'loop s yntax-database) '(Seg-Type "initialization"))
- LOOPsetl:(length 21 - S]set2:Iletgth 21

> (index 'TEST-SCORES segp;-database)
-> SBsetl:tlength 61 The P31. converts CODE-RE;IONI to a set of sag-

seated parse frames (a heuristic process), and the
function Segs-Within enumerates the subsegments it

The program only contains one TPP, but there contains. The system identifies two initializa-
are two loops, and several segments which relate to tions as a result. The user prints them by con-
the variable TEST-SCORES. It is important to verting them to the textual view.
notice that all of these segments use the data con-
tained in the variable TEST-SCORES but do not

,- necessarily refer to it by that name (for example, > (showl SgsetZ) '-.'
, the literal A(1)" in the ARIAYSUM function o) for I in *al..N** loop

accesses the test score array). This association > **SUM: REAL:- 0;**
is apparent from the data flow analysis within the
segmented parse.

The answers correspond to the initializations
The user intersects these descriptions by of the iteration variable "I", and the accumulation

invoking the code painting paradigm. The code- variable, "SUM". Note that the P1l. retrieves the

painting algorithm returns the largest region of second initialization, even though it is lexically
text which can be described in all three ways. outside of the sumation loop itself. It is iden-

tified from the segmented parse analysis, which
> (overlay-code-regions TPPsetl LOOPsetl SIGsetl) associates a loop and its initializations no mattur

- CODE-REGIO11 how far apart they might have been in the original
*efor I in 1..3 loop code.

SUM:- SUM + AM;
and loop;**

6. CURRENT STATUS AND FUTURE WORK
In order to compute this information. the

overlay function automatically converts the input
sets into their corresponding regions of code. AI&DS is now developing a prototype version of ,
Most of these translations are automatically avail- the IPE (in a three year. 2-3 person effort), which
able (though heuristic in nature). In the case of is intended to demonstrate the efficacy of our

the TPP, the user had to define that mapping at knowledge based approach to the design of program- "

some time. sing support tools. The prototype will embody a p

portion of sll of the facilities that have been

At this point, the user has identified a loop described. The IE is currently targeted for theAds language. It will initially run on a Symbolics
whict computes the su of the test scores. In
order to find the initializations of this code, he 3600, a fast, personal LISP computer that features

iiil e

6 of 6

a bigb-resolutio bit-sap display, but it is being
designed to be portable to other systeme (in par-
ticular. Unix).

We expect to augment the RPM's database to
include more pragatic inforuation (e.g.. the rela-
tion between requirments and program structures),
and we intend to extend the PRL to the point where
it will be able to automatically plan and carry out

-" search requests of the kind demonstrated in this
" paper (based on a single user query). When these

extensions are complete, the PRL will define a more
formal reference language.

" The task of building a prototype for the IPE
*-. involves a number of issues including the incromen-

tal modification of databases, and the recognition
of user intentions in code. In order to solve
these problems in the context of our applied
research, we expect to rely heavily on methods for
eliciting information from the user, and to focus
on tmplste-oriented techniques for manipulating

*. programs.

Acknoledgments

r
We would like to thank Michael clzustowicz and Uric
Domaeshek for their contributions to this project.

-.

I. Brotsky, D., Naster's Thesis, MIT, forthcom-
ing.

2. Dean, Jeffrey B., and Brian P. McCune,
. "Advanced Tools for Software Maintenance".

A&DS T 3006-1, October 1982. %
• •

p,. ,

3. Loa., T., "A New Rome for the Mind." ALL"&-
Sal Lion. March 1962.

4. Rich, Charles. "Inspection Methods in Program-
ming", Ai-TR-604, Artificial intelligence
Laboratory. MIT, 1981.

S. Shapiro. Daniel G., Brian P. McCune, and
Gerald A. Wilson. "Design of an Intelligent F:
Program U4itor". A1836 TI 3023-1. September
1982.

6. Teitelbaum. T., T. Reps, and S. Rorvitz. "rhe
Why and Wherefore of the Cornell Program Syn-
thesizer", Puoceedings &M SIGL.&II OA
Conferenc 9A JIM iulation, June 1981,
pp. 8-16.

7. Vaters, Richard C.. "Automatic Analysis of the
Logical Structure of Programs", AI-TR-492,
Artificial Intelligence Laboratory, MIT, 1976.

S. Waters, R., "rhe Ptogrmoser's Apprentice:
Knowledge Based Program Editing," ULgE Trn_ J\

sectionss 2&. Softwazrt gnain SDL -5 , 1,
January 1982, pp. 1-12.

%, A.

'%.

L ,-- . .. ;"% ; -•-. ' -. '-.. ., ., .-... ,% ' ' ... ' ' ' .,.' % ... , ,,. .. °.,.:' ,°•-. - . . ,.-.

* . A a-.k..a. a ... b ~A S. .. 1..~ ..* - A .. - -- - a - -. . -. a -

I.*. -,

p

APPENDIX B

RUBRIC: A System ror Rule-Based
Information Retrieval

I

I

I

I

* ..

'-a',

a *

6,

.d ~

~aA.

- I,

a.

s *.a%:..:.a: -.-. %~*.->.-:%->.-v~.~-*A'................*. 'a

[Invited paper, COMPSAC '83, November 1983.)

RUBRIC: A SYSTEM FOR RULKI-ASED IUFORMATION R.ETRIEVAL.

Brian P. McCune, Richard H. Tong, Jeffrey S. Dean. Daniel C. Shapiro

Advanced Information & Decision Systems -".
Mountain View, California

ABSTRACT @ C., -, euemc,
A research prototype softvare system for con- TATISTICAI 1116N CHIN

sfl~ACNAPPROACH
ceptual information retrieval has been developed. F G- _
The goal of the system, called RUBRIC, is to pro- Wat" 92ESSIO-6
vide-ore automated and relevant access to unfor- ,m.A,, Sic (81W450. .
matted textual databases. The approach is to use ,-'%I-N.G

production rules from artificial intelligence to
define a hierarchy of retrieval subtopics, vith •(sAV.

fuzzy context expressions and specific word phrases csuagcs-
at the bottom. RUBRIC allows the definition of '"""" /Si i.rttacc
detailed queries starting at a conceptual level, "rim ,',, IU

partial matching of a query and a document, selec- c(ua. 1.ccu

tion of only the highest ranked documents for "WL LsWA

presentation to the user. and detailed explanation v.srum.'
of how and why a particular document was selected. .SE-MTICj
Initial experiments indicate that a RUBRIC rule set APPROACH
better matches human retrieval judgment than a
standard Boolean keyword expression, given equal
amounts of effort in defining each. The techniques Figure 1: The Information Retrieval Triangle

presented may be useful in stand-alone retrieval
systems, front-ends to existing information
retrieval systems, or real-time document filtering
and routing. relatively naive computer users. For both classes

of users, it is important that future retrieval
systems possess the following attributes:

1. TEK INFORMATION RITRIEVAL PROILEI - Detailed queries should be posed at the user's
own conceptual. level, using his or her vocabu-
lary of concepts and without requiring complex

The three most comon approaches to textual progrmming.

information retrieval (see the vertices of the tri-
angle in Figure 1). when used in isolation, suffer - Partial matching of queries and documents
from problems of precision and recall, understands- should be provided, in order to mirror the
bility. and scope of applicability. For example, imprecision of human interests.
Boolean keyword retrieval systems such as the com-
mertial DIL.OG system operate at a lexical level, - The number of documents retrieved should be
and hence ignore much of the available information dependent upon the needs of the user (e.g..
that is syntactic, semantic, pragmatic (subject- uses for the documents, time constraints on
mtter specific), or contextual. The underlying reading them).
reasoning behind the responses of statistical
retrieval systems (Salton 6 HcGill-831 is difficult - A logical, understandable, and intuitive expla-
to explain to a user in an understandable and nation of why each document was retrieved
intuitive way. Systems that rely on a semantic should be available.
understanding of the natural language that is
present in documents (Scbank & DeJong-791 oust The user should be able to easily experiment
severely restrict the vocabulary and document with and revise the conceptual queries, in
styles allowed (e.g.. to partially formatted, order to handle changing interests or disagree-
stereotypic messages). sent with previous system performance. '

In addition to being used by specialists, in - Conceptual queries should be easily stored for
the near future large on-line document repositories periodic use by their author and for sharingwill be made available via computer networks to with ocher users.

--% %

2

2. A EiSOWLZMg-BAS•D Ap.ROA"
Although RUBRIC is a knowledge-based system,

it really is not an expert System in the usual
sense. 1n an expert System the sytem's knowledge

In order to address the issues raised above, base is an attempt to define what is known about
we bare created a prototype knowledge-based full- some field of inquiry (e.g.. infectious diseases.
text inforation retrieval system called bUBRIC geology) in a useful form analogous to that used by
(f or RUle-Based Retrieval of Information by Com- human experts. Although the knowledge is never
puter). RUBRIC integrates sone of the best charac- complete and perhaps not agreed upon by all
teriatics of all three basic approaches to inform- experts there exsts some underlying theory or
tioe retrieval (Figure 1) within the framework of a physical model that all concerned believe. In the
standard artificial intelligence techniqu . case of information retrieval, as in other areas of -
Queries are represented as a set of logical produc- preference such as politics or matters of style,
tion rules that enable the user to define retrieval there is no "right" answer. Hence, RUBRIC is
criteria using much better semantic and heuristic really a system for capturing and evaluating human
controls than can be found in current retrieval preferences. Preference systems are likely to play
systems. a much larger role in the future, as artificial

The rules define a hierarchy of retrieval intelligence tackles the problem of supporting con-
topics (or concepts) and subtopics. By naming a plex, multi-attribute decision mking.
single topic, the user automatically invokes a
goal-oriented search of the tree defined by all of
the subtopics that are used to define that topic.
The lowest-level subtopics are defined in terms of 3. EXJZPSSIIG QUERY TOPICS AS PRODUCTION RULES
pattern expressions in a text reference language,
which alloys keywords, positional contexts, and
simple syntactic and semantic notions. Each rule RUBRIC gains its power from the knowledge base
may have a user-provided heuristic weight. This of retrieval rules at* its disposal. An example set
weight defines how strongly the user believes that of rules that defines the topic of the 1982 World 1.
the rule's pattern indicates the presence of the Series of Baseball is given in Figure 2. These
rule's subtopic. Technical issues that arise when fifteen rules define a main topic, called
information retrieval is viewed as a problem in World_Series, and a number of subtopics. The sub-
evidentisry reasoning are discussed in (Tong et topics are used to define the main topic. but way
sl.-83Bj, also be used as query topics on their own or as

subtopics of other main topics. This rule set is
To perform a retrieval RUBRIC uses the set of by no means complete; however, extensions in the

vres for a topic to create a heuristic Mlot goal. for of additional rules are teasy to sake.
tree that defines at its leaves what patterns of
words should be present in documents, and in what Each rule defines a logical implication; that
combinations. is, the existence of the pattern on the leftband

side of the arrow ("->") implies the existence st
Document recall by RUBRIC is enhanced by the the topic named on the. rightband side. Thus, a

use of higher-level notions than simple Boolean rule definds the topic or concept named in its
combinations of keywords. Retrieval precision is righthand side. There may be multiple rules about
improved by the use of variable weights on each the same topic, and RUBRIC will use each as an
rule to define the certainty of match. These equally valid alternate definition (i.e., there is
weights make it possible to present to the user an implicit oR). The lefthand side of a rule is
only partial matches above some threshold. By its body, which defines a pattern to be matched.
tracing through rule invocation chains, an explana- This can be the topic named in the righthand side
tion facility allows the user to see exactly why a of another rule, a text reference expression
document was retrieved and why it was assigned its (defined below), or a compound expression that
overall certainty or importance weight. This pro- defines the logical AND (denoted by "&") or OR
motes experimentation and appropriate modification ("Mi) of two or more other rule topics or text
of the rule base. The retrieval vocabulary to be reference expressions. Explicit text to be matched
used is unrestricted, being left up to whoever without further interpretation is surrounded by
creates the rules. Rule sets may be stored in pub- quotation marks; names of topics and text reference
lic or private rule *libraries., so that useful language constructs are not. The last element in a
subtopics may be shared among users, thus simplify- rule is its weight, which is a real number in the
in& the task of defining new topics. interval (0.11. It represents the rule .definer's

confidence that the existence in a document of the
A rule-based query can be more complex than pattern defined by the rule's lefthand side implies

the keyword expression that might be used with a that the document is about the topic named in the
Boolean retrieval system. Therefore, we expect rule's righthand side. If a weight is omitted, it
rule-based retrieval to be used initially for is assumed to be 1.0 (i.e., absolute confidence).
applications in which the eame query is made Note that a weight is a number made up by a human
repetitively over some period of time. In such user, based upon his or her experience and insight;
situations people who are trained RUBRIC users but a weight is nML a statistical quantity.
not programmers should be willing to expend more
effort to develop a detailed rule-based definition
of the query topic.

%. %:

3

team I event VorldSeries increase (or decrease) our belief if seen Lu con-

juvction with some primary evidence. The form of

St. Louis Cardinals I Milwaukee Brevers - tem such a rule is

"Cardinals" -> St. Louis Cardinals (0.7) if A. the& C to degree vl;
Cardinals..fullnsme -> St. LouisCardinals (0.9) but if also B. then C to degree w

saint & "Louis" & "C.ardinaWsai Cardinals ual.dname where if v
1

is greater than v2 then 3 is discon-
d ufirming auxiliary evidence, and if vI is less then

"St." "> saint (0.9) w2 then B is confirming auxiliary evLdence. This
"Saint" -> saint has the effect of interpolating betveen v and w2.

depending upon the certainty computed for the auxi-

'Irevers" -> Nilvaukee Brewers (0.5) lisry clause B. Thus we might have a rule of the
'Milwaukee Brevers" -) Milvaukee..Brewers (0.9) kind:

"World Series" -> event if (the story contains the literal string "bomb").
baseballchampionship -> event (0.9) then (it is about an explosive evic)

to degree 0.6;
baseball & championship -> baseball championahip but if also (it mentions a boxint u tch),

then (reduce the strength of the conclusion)
"ball" -> baseball (0.5) to degree 0.3
"baseball" -> baseball

Mere ye see the concept of disconfiruing evidence
"championship" -> championship (0.7) in operation; notice that by itself being about the

concept boxing mUtc is not evidence that can be
Figure 2: Rule Base for Topic of World.Series used to support or deny the conclusion ye are try-

ing to establish.

A text reference expression nay be a single Knowledge bases of rules are expected to
keyword or phrase, or a lexical context within evolve over time. Initially the set of rules pro-
which two keywords or phrases must be found (e.g.. vided in a knovledge .base will capture a small por-
word adjacency, same sentence, same paragraph). tion of the kinds of knowledge required. New rules
So, for example, one can specify that two patterns are easily added to RUBRIC, currently by means of a
are of interest only if they occur in the same standard display-oriented text editor. Existing
sentence. Fuzzy (partial) matching versions of rules may be modified for experimentation to pro-
these contexts are also allowed. RUBRIC's fuzzy vide feedback for honing their logical structure,
pattern matcher returns a value in 10,11 that is keywords, and weights.
proportional to the degree that the phrases are in
the desired context. i.e., inversely proportional
to the logical distance between the two objects in
the document. For example, when matching a fuzzy 4. QUFY PROCESSINC
ame-sentence cootext. two phrases in the ame sen-
tence might receive a weight of 1.0, within adja-
cent sentences 0.8, etc. A set of rules defines a logical hierarchy of

.retrieval topics and subtopics (Figure 3). A
Rules often define alternate terms, phrases, specific retrieval request is carried out by a

and spellings for the same concept. Thus, rules goal-oriented inference process similar to that
can also provide a simple hierarchical thesaurus, used in the HYCIN medical diagnosis system
with variable weights defining the degree of cer- (Shortliffe-76]. This process creates and evalu-
tainty vith which a particular variant is to match. ates an AND/OR tree of logical retrieval patterns.
for example, in English "St.* is used as the abbre- The root node of this tree represents a smantic
viacion for both "Saint" and "Street4 . and thus topic or concept that the user wants retrieved;
"St." is weighted less that the keyword 'Saint" in nodes farther down in the tree represent intermedi-
Figure 2. Rules can also aid multilingual informa- ate topics with which the root topic is defined;
tion retrieval. For example, if the database con- and nodes at the leaves of the tree represent pat- .'-'

tains text in multiple languages, then the lowest terns of words that are to be searched for in the
level(s) of rules might define synonyms in each database. Each arc in the tree is weighted such .. --

language of interest, The more conceptual, that the intermediate topics and keyword expres-
language-independent rules higher in the hierarchy sions contribute, according to their weight, to the
would remain unchanged, overall confidence that the root topic has also

been found. (Unlabeled arcs in Figure 3 have an ..

It has been found useful to provide a new type implicit weight of 1.0.) Arcs representing the
of rule in RUBRIC, called a moifierz jrL. which onjuncts of an AND expression are linked together
enables the user to incorporate auxiliary (or con- near their con base in Figure 3.
textual) evidence into the query. Auxiliary evi-
dence is evidence that by itself neither confirms RUBRIC supports a number of calculi for inter-
one discoufirms a hypothesis, but which may preting the rule weights. Weights are treated as

certainty or partial truth values, not as

4KW,..tdl..G.,4(k.y1)

-kesoe.. a" *.(4 "Wa I.Eas(h ..p*

'5.t.0.tI' .4-1 to) -vlid U.ib to

I. .j..SSL1 C:. 1=1.4
1

S 0 I.& .. ,() 5d ht'(0) t .G.1 i.01 jh . -0 p1041.1)

0..1

,.Iti (a %I.() (as ' do.I 0o) N.1II (1.0) 1 SI11l0 t.eetI 10

'I.* (oo *U4-4 (0)

Figure 3: Rule Evaluation Tree for World_,Series Topic

probabilities. Each calculus defines bow to comn- receive a weight of 0. The baseball code would
bin. the uncertainties during such logical deduc- then be assigned the value 1.0 because that is the
tions as AND. OR. and implication. The default maximum of (1.0 sultipled by 0.5) and (1.0 times
method is to use the functions minimum. maximum. 1.0). Similarly, the championship node receives
and product to propagate the weights across AND and the value 0.7. Then. because it is an AND code,
01 arcs and! implication nodes, respectively the bseballcbampionship node gets the value 0.7.
(Shortliffe-76I. vhich is 1.0 times the minimum of 1.0 and 0.7. The

event node then gets the value 0.63. which is the
Referring to Figures 2 and 3. ye nov describe maximum of (0 times 1.0) and (0.7 times 0.9).

how RUBRIC processes a query. (Annotated traces of Sic thece are no keywords in the docuoment that
the sytma operation are found in (McCune et support the team subtopic, the overall weight of
&1.-831.) When the user types in the conceptual the match of the WorldSerios topic on this docu-
query World Series. RUBRIC searches its rule base went is 0.63 (1.0 times the maximum of 0 and 0.63).
for all rules that provide definitions for this
topic (i.e.. that have WorldSaries on their right- Other combinations of keywords and phrases in
hand sides). There is only one such rule in Figure a document can satisfy the concept of World Series
2, so RUBRIC expands that rule according to its to varying degrees. Figure 4. shows the- other
lefthand side. The result is that the weights possible for the World Series topic.
World Series. tams, and event nodes of Figure 3 are depending upon the dominant phrases that occur in
created, as veil as the two arcs between th em, the document.
Since team and event art themselves the names Of
topics, rather than textual patterns. RUBRIC
searches its rule base for their definitions. This Phrases Present in Document support for
process continues recursively until all leaf nodes World Series Topic
of the tree contain textual pattergs.

"World Series" 1.00
At this point each document in the database is

watched against all of the phrases in the leaves of "Saint", "Louis". "Cardinals" 0.90
the tree. For a given document, if a phrase is 'Milwaukee Brewers' 0.90
found somewhere in the document, the corresponding
node in the tree is assigned a value of 1.0. other- "St.". "Louis", "Cardinials" 0.81
vise 0. Then the weights at the leaves are com-
bined &ad propagated up through the tree to deter- "Cardinals" 0.70
mine the overall weight to be assigned to this
document. 'baseball", "championship" 0.63

For example, if a document contained the words 'brewers" 0.50
"*ball ", "baseball", and "championship", and no
other words referred to in the example rule base, "ball", "championship" 0.45
then the modes of the tree would be assigned the
veight@ shown is penittheses in Figure 3. The none of the above 0.00
"ball". "baseball", and "championship" leaf nodes
all receive a veight o1 1.0. and all other leaves Figure 4: Possible Weights for World-Sories Topic

N.~

7|

(denoted MM). The first definition therefore gives

S. USER INTERYACE us an insight into the system's ability to reject
unwanted stories (precision). whereas second gives
us insight into the system's ability to select

A user need only see the highest weighted relevant stories (recall). . .-

documents. After the database has been searched.

each document that was considered has an associated We selected as a retrieval concept "violent

weight that represents the system's confidence that acts of terrorism". and then constructed an

the document is relevant to the topic requested by appropriate rule-based query. This is summarized

the user. RUBRIC sorts these documents into des- in Figure S. where we make extensive use of odif-

cending order based upon their weights, and groups ier rules. An auxiliary clause is shown linked to

the documents by applying statistical clustering its conclusion by a directed arc labeled '"odif- I..
techniques to the weights. The user i's then ier". Application of this query to the story data-

presented with those documents that lie in a clus- base results in the story profile shown in Figure --

ter containing at least one document with a weight 6. (Notice that for presentation purposes the

above a threshold provided by the user (e.g.. 0.8 stories are ordered such that those determined to

or above). Clustering prevents an arbitrary three- be a priori relevant are to the left in Figure 6).

hold from splitting closely ranked documents. The The performance scores for this experiment are

threshold may be varied depending upon how much Precision: NF - 1 when we ensure that NM 0. and

time the user has available to read documents, bow

important it is not to miss any potentially eal NH-Shnwensrtat 7 -0

relevant ones, etc. R NM 5

RUBRIC is able to explain why a particular This is almost perfect performance, being marred

document was retrieved. This capability is very only by the selection of story 25, which, although

important for instilling confidence in users and it contains many of the elements of a terrorist

helping them get a good enough feel for the oper~a. article, is actually a description of an unsuccess-
ful bomb disposal attempt.

tion of the system that they can successfully write
and use their own retrieval rules. RUBRIC can.
display each rule that results in a non-zero weight ,.-..

being propagated, as well as the value of that
weight. RUBRIC can also show each attempt to match
a word or phrase to the document, along with REASONU*n 1.0

whether or not it matched.- .5 1.0

.6 REV~OLUIO SCTCErt
(OPPOSTIEN.

COV"K5NIl

6. LI2ZRINIENTL RESULTS

We have done preliminary experiments with s

RUBRIC to examsine the improvements that can be ."

achieved over a conventional Boolean keyword SNTN IKILLING. POLTICIA)

approach. As an experimental database for testing I
the retrieval properties of RUBRIC, ve have used a 1.0

selection of thirty stories taken from the Reuters,
News Service. Our basic experimental procedure is 1.0 0

to rate the stories in the database by inspection .4 StIfIC.KACot C€sst-CTO.

(i.e., define a subjective ground truth), construct
a rule-based representation of a typical query.
apply the query to the database, and then compare
the rating produced by RUBRIC with the a priori VINT-C4EtU ^l e 1.0 I0LNTAF vTt

rating.

We concentrate on two basic measures of per- .i '0(5" "1CAT" "(5S"

foruance. Both of these are based on the idea of
using a selection threshold to partition the
ordered stories so that those above it are TIOLtT.ACI

"relevant" (either fully or marginally) and those .O1.0

below it are "not relevant". In the first we lower
the threshold until we include all those deemed "

riori relevant, and then count the number of. KILLING GOOING KIOlUtING (€OUWI[TE TKEOVER

unwanted stories that are also selected (denoted ,.,

N). In the second we raise the threshold until we

eclude all irrelevant stories, and then count the Figure 5: Rule Base Structure for Concept

ember of relevant ones that are not selected of Violent Acts of Terrorism

S. - - -o". . . .

6

To compare RUBRIC against a more conventional in the specification of his or ber query, thereby
oproach. we constructed two Boolean queries by increasing both. precision and recall. A
ing the rule-based paradigm and setting all rule traditional Boolean query tends either to over- or
eights to 1.0 (thus incidentally @bowing that our under-'coosttain the search procedure. giving poor
tthod subsumes Boolean retrieval as a special recall or poor precision. Wie feel that. given
se). One of these queries is shown in Figure 7. equal Amounts Of effort. RUBRIC allows better
ian AND/OR tree of sub-concepts. The only models of human retrieval judgment than can be k

6fference between the two Boolean queries is that achieved with traditional Boolean mechanisms.
kthe first vs insist on the conjunction of ACTOR
kd TERRORIST-EVENT (as shown), whereas in the We have also explored the effects of using
icond we require the disjunction of these con- different calculi for propagating the uncertainty
pta. The conjunctive form of the Boolean query values within the system (Tong et al.-83Aj. Among
Lsacs five relevant stories and selects one unin- these calculi are well-known classes such as those
)rtant story; whereas the disjunctive form selects that use "Wax" and Isin' as disjunct and conjunct
LI the relevant stories, but at the cost of also operators, and those (so-called 'layesism-like")
riecting seven of the irrelevant ones, that use 'sum" and "product". Our initial conclu-

sion is that the calculus used is not the major
While these results represent only a prelim- determinant of performance. hut that it does

ary test. we believe that they indicate that the interact with how rules are defined.
JBRIC approach allows the user to he more flexible

STOR RATING
to a .Rating assigned by

RUBRIC (normnalfaed)

rrelevant

STORY NUMER

Figure 6: Story Profile from RUBRIC Experiment

AIL5411SSASINA~TO SSCIFIC-ACTOO GEC15AIcoo

1&fIG ING YAO s ISAYIN POtIICIAN AQ 1w. 0PL 'IRA' '110M . rsx. sas

519155 (190&51O

Figure 7: AND/OR Concept Tree for Boolean Query

7- N. %7.

7

7.~~ ~ [~T~ OK Schank 4 DeJong-791 R. C. Schenk and C
DeJong. "Purposive Understanding". Chapter 24.

Much additional research and system develop- in J. E. Hayes. D. Michie. and L. 1. Mikulich,
t are needed to make RUBRIC usable. We art editors. Machin Intlli1Senc Volume 9. 1979,
rently providing a better user interface and pages 459-478.
duct ing sore complete experiments. The inter-
e for end users vill include more focused -(Shortliffe-761 Edward Rance Shortliffe.
eractive explanation. analysis of results for Comnutgr-ilased Medical Copsultations: !YIN!.
sitivity to specific rules and weights. display American Elsevier Publishing Company. Inc.. Niew
graphs such as Figure 6. and rule editing. York. Rev York. 1976.

trimeatation will consist of defining, in con-
ction with users, larger rule sets for a realia- - (Tong et &l.-83A1 Richard M. Tong, Daniel C.
retrieval domain and then using these rules to Shapira. Jeffrey S. Dean, and Brian P. McCune.
naeve documents from a realistic database. "A Comparison of Uncertainty Calculi in an

Expert System for Information Retrieval", in
Other areas of possible future work include Alan Bundy. editor, Proceedinim Ao t Eighth-

ing rule evaluation and textual pattern matching International Joint Conference on Artificial
t efficient, possibly through the use of beuris- Intelligence, William Kaufmann. Inc., Los
a to limit rule evaluation; exploring additional Altos, California, August 1983. Volume 1. pages
a of representing and propagating uncertainty in 194-197.
h numeric and symbolic representations; ablative
ting to measure how useful each system feature - Tong et al.-83B1 Richard M. Tong, Daniel C.

extending the text reference language to allow Shapiro, Brian P. McCune. and Jeffrey S. Dean,
cification of the syntactic role that a word "A Rule-Based Approach to Information

ys in a sentence (e.g., "ship" used as a noun Retrieval: Some Results and Comments",..

:us as a verb); constructing a more general Proceedings Ao th National Conference on
saurus that has a network structure rather than Artificial Intelligence, William Kau,.Aaan,
hierarchical one like rules; and allowing Inc.. Los Altos, California. August 1983, pages
rieval from multiple remote databases. 411-415.

8. POTENTIAL APPLICLTIONS

Application systems based on RUBRIC may be
Ful for information routing and change detec-
s, in addition to information retrieval. For
)ruation retrieval RUBRIC could be extended to
Lon formatted documents such as messages or
iogrsphlc entries, to work as a front end to

iting databases and information retrieval eye-
iand to segment larger documents by subtopics.

LIC could be used to process messages in real-
ifiltering the important once and routing them
he appropriate recipient (human or another pro-

). With RUBRIC, analyses of documents over
could detect statistical changes at a concep-
level rather than just in the use of indivi-

keywords.

9. RZFEZENCES

[McCune et &1.-83) Brian P. MicCune. Jeffrey S.
Dean, Richard M. Tong, and Daniel G. Shapiro.
RUBRI: A Systjg jgyr Rule-Based Information
Retrievel, Technical Report 1018-1. Advanced
Information 4. Decision Systems, mountain View.
California, February 1983.

[Salton 4 McGill-831 rerard Salton and Michael
J. McGill. Introduct-ion 12 Madern Information
Reuievial~. Mc~raw-ill Book Company, N1ew York,
New York. 1983.

FI.LMED

7-85

DTIC

